Double Chooz

commissioned?

XIV Workshop on Neutrino Telescopes (March 2011)

on behalf of the DC collaboration...

Anatael Cabrera アナタエル カブレラ

CNRS / IN2P3 Double Chooz @ APC (Paris)

PMNS (Unitary & 3x3) \Rightarrow 3 mixing angles & I complex phase \Rightarrow leptonic CP violation

Experiments: limits (CHOOZ, MINOS, KamLAND, Solar, SK) $\implies sin^2$ $(2\theta_{13}) < \sim 0.10$ @ 90%CL

Global Analysis: hint on $\theta_{13} > 0$ @ ~1.5sigmas

T.Schwetz et al. arXiv:1103.0734 M.Concha-García et al. arXiv:1001.4524

P3 & APC

why are reactor-Vs so cool?

● discovery of neutrinos (1956 → Nobel Prize 1995) validation of neutrino hypothesis (Pauli) • dominant contribution to limit on θ_{13} so far (CHOOZ) • dramatic improvement on the way... • best measurement of Δm^2_{12} (KamLAND) • a better measurement @ 60km baseline? complementary input in the neutrino oscillation quest... • comparison wrt Solar $\implies \theta_{13} \& NSI$ • comparison wrt Beams $\Rightarrow \theta_{13} \& [\delta_{CP} \& \pm \Delta m^2_{13}]$

"solar" E/L @ KamLAND (reactor-Vs)

one of the most beautiful E/L plot (reactor Vs)...

the coolest reason for us...

Talks by Lassere, Wang, Kim $P(v_e \rightarrow v_e) \sim 1 - \sin^2(2\theta_{13}) \sin^2(\Delta m_{23}^2 L_0/E)$

 $\left[\text{plot: E} = 3\text{MeV}, \sin^2(2\theta_{13}) = 0.1, \Delta m_{23}^2 = 2.5 \times 10^{-3} \text{eV}^2\right]$

ND => reduce several systematic uncertainties (mainly flux rate & shape) wrt FD

DC strongly involved in leading efforts to improve reactor flux measurements

→ Just published: Mueller et al. (arXiv:1101.2663) & Mention et al. (arXiv:1101.2755)

Double Chooz Collaboration

Our experimental setup...

Chooz Reactors Power: 8.5GW_{th} (N4s: very powerful)

Near <L> 400m 400∨/day 120mwe Target: 8.2t End of 2012

Far <L> 1050m 50∨/day 300mwe Target: 8,2t March 2011

our θ_{13} knowledge versus time...

DC Proposal: hep-ex/0606025

Detector $\Rightarrow \theta_{13}$ -LAND

T

W

a θ_{13} -LAND...

 ● Pit: 7mx7m (FD: CHOOZ lab) ⇒ max. fiducial volume cylinder

Inner-Detector

Target: acrylics + scint & 0.1%Gd
 ⇒ n-Gd interaction region

• γ -Catcher: acrylics + scint \Rightarrow extra calorimetry containment

• **Buffer**: oil (no scint.) \Rightarrow isolation

 Inner-Veto: scint^{*} ⇒ tagged µs and fast-n

Outer-Veto: scint-strips (a la MINOS) ⇒ tagged near-by µs

• γ -Shield: |5cm steel \implies reduce rock- γ s (singles)

 Glove-Box => calibration apparatus contamination-less Buffer: 390x PMT: IV: 78x PMTs

scint*⇒ LAB scint ⇒ Dodecane(80%)+PXE(20%)+PPO+Bis-MSB

θ₁₃-LAND must...

inter-detector comparison systematic <1%radio-purity & material compatibility

engineer's view

Our MC's (G4)view

0.01

6.67

our favorite view...

inverse- β reaction

U

2P3 & APC)

Coincidence $\Delta \tau$ depends on Gd concentration \Rightarrow excellent BG rejection mechanism

Wednesday, 16 March 2011

13

backgrounds...

Anatael Cabrera (CNRS-IN2P3 & APC)

All backgrounds are linked to:

- cosmic µ rate
- detector radio-purity

(i.e. no v-oscillations backgrounds)

• BGs are reduced \Rightarrow detector design & measurements in situ • "reactor-off" measurements by CHOOZ • μ tagging & detection \implies IV, OV detectors and dedicated electronics Correlated BGs (<2/day & <10/day) • β -n lsotopes (half-life time ~100ms) \Rightarrow impossible to veto (time/location) • Fast-neutron: recoil + Gd-capture • Accidental BGs (singles @ ID < 10Bq) coincidence: radioactivity + fast-neutrons • (dominated) shielding & radio-purity

cosmic-µ

BG rates

Critical input by CHOOZ experiment (even some spectral info) $FD \implies$ "fast-n"-like & isotopes measured @ CHOOZ ("off") $ND \implies$ CHOOZ measurements extrapolated to shallower site

Detector	Site		Background							
			Accid	ental	Correlated					
			Materials	\mathbf{PMTs}	Fast n	μ -Capture	9 Li			
CHOOZ		Rate (d^{-1})	<u></u>	<u></u>			0.6 ± 0.4			
$(24 \ \nu/d)$		Rate (d^{-1})	$0.42 \pm$: 0.05	$1.01 \pm 0.04(stat) \pm 0.1(sys)$					
	Far	${ m bkg}/ u$	1.6%		4%					
		Systematics	0.2%		0.4%					
Double Chooz		Rate (d^{-1})	1 ± 0.1	1 ± 0.1	0.15 ± 0.15	0.42 ± 0.2	1 ± 0.5			
$(69 \ \nu/d)$	Far	${ m bkg}/ u$	1.4%	1.4%	0.2%	0.6%	1.4%			
2014 AL 10 1 10 10 10 10 10 10 10 10 10 10 10 1		Systematics	0.2%	0.2%	0.2%	0.3%	0.7%			
Double Chooz		Rate (d^{-1})	7.2 ± 1.0	7.2 ± 1.0	1.4 ± 0.14	2.6 ± 1.2	5.2 ± 3.2			
$(990 \ \nu/d)$	Near	${ m bkg}/ u$	0.7%	0.7%	0.14%	0.26%	0.6%			
		Systematics	0.1%	0.1%	0.2%	0.1%	0.3%			
Dawn were starting the	and the second						and the second second			

DC Proposal: hep-ex/0606025

16

Anatael Cabrera (CNRS-IN2P3 & APC)

readout & online

one channel

OV readout à la OPERA (Hamamatsu M64 + Maroc2-chip)

Anatael Cabrera (CNRS-IN2P3 & APC)

calibration

far detector status...

once upon a time, in a tiny village of France (near Belgium)...

...2 of the most powerful reactors in the world got built \Rightarrow **Chooz**

FD underground lab access: 300m walk @ a small angle

Wednesday, 16 March 2011

Anatael Cabrera (CNRS-IN2P3 & APC)

our v detector (in fact: 2 detectors)

Inner-Detector \implies PMT installation

Inner-Veto Detector (scintillator) \implies tag μ s & possibly fast-neutrons

Wednesday, 16 March 2011

25

filling: a very delicate/precise operation

- gas systems: flushing, blanket and vents
- liquid systems: 4 operating modules (one per volume), safety features and online monitoring

•very precise operation:

- pressure control (differences within ~0.1 mbar)
- liquid level control (difference within ~ l cm)
- density control (differences within ~ lg/l)
- •temperature corrections

26

HV circuits

electronics hut

top-chimney

commissioning "mechanical detector": done
detector filled (end of 2010)
top-shield installed (end of 2010)
commissioning "instrumental detector": imminent
next: outer-veto & glove-box (for deployment) installation

instrumental commissioning...

• necessary conditions:

filling ⇒ light-level, physics, etc...
shielding ⇒ event rate and energy spectrum
"instrumental commissioning" (mid-Jan-now:)
superb performance & high quality data
study response of the detector
tune readout response (all PMTs & channels working)
tune trigger response (thresholds, etc)
optimise DAQ to detector response/rates
start of neutrino-physics run?⇒ O(days!)

the first single-PEs detected @ FD...

Anatael Cabrera (CNRS-IN2P3 & APC)

checking electronics noise with FADC...

inner-detector time response...

muon event (inner-detector)...

Anatael Cabrera (CNRS-IN2P3 & APC)

muon event (inner-veto detector)...

time between "µ-like" (inner-veto detector)

35

contained event...

what to remember...?

• Double Chooz Status... • FD construction \Rightarrow done \Rightarrow done (since June "dry" detector) • FD first lights • FD filling \Rightarrow since (since end of 2010) \implies imminent (a matter of days) • FD commissioning • FD measurement of $\theta_{13} \rightarrow very soon!!$ \Rightarrow starts digging April 2011 (till April 2012) •ND laboratory • ND detector \Rightarrow towards the end of 2012 • DC can reach CHOOZ's worth of **signal** data in ~2 months • $\sin^2(2\theta_{13}) \leq 0.054$ @ 90%CL with FD only (about 1.5 years of data) • $\sin^2(2\theta_{13}) \leq 0.030$ @ 90%CL with FD & ND (about 3 years of data)

Anatael Cabrera (CNRS/IN2P3-APC, Paris) anatael@in2p3.fr

grazie...

emergency slides...

$\frac{1}{40}$ Gd loaded scintillator \implies stable & transparent!

calibration...

Ight sources (embedded, i.e. non-intrusive): LEDs in ID and IV • monitor stability of readout (timing, gain) and scintillator • light sources (deployed): LED, red-laser & UV-laser din • PM gain, timing, scintillator stability & attenuation radioactive source: across most energy scale • Cs¹³⁷, Ge⁶⁸, Co⁶⁰ and natural sources (H-capture, michel-e+) • n-sources: n capture on Gd (study efficiencies) • Cf^{252} (untagged) & AmBe (light tagged) \Rightarrow 3D deployable • 3D calibration strategy: map out detector response & efficiencies •along z-axis, articulated arm (off z-axis), GC & Buffer tubes •2 detectors \Rightarrow calibration source absolute knowledge less important • same source response comparison ND and FD (cancel some systematics)

Anatael Cabrera (CNRS-IN2P3 & APC)

systematics breakdown

X XXXX	Error Source	Error Type	Error Description	CHOOZ	DC	DC	CHARGE AND
and the				Absolute	Absolute	Relative	11/
XXXX			Reactor				
Car at the			Production Cross Section	1.90%	1.90%		
	Reactor		Core Powers	0.70%	0.70%		2
N. Mary			Energy per Fission	0.60%	0.60%		L i.
XXXXXX			Solid Angle/Bary. Displct.			0.20%	Ca
			Detector				Ŏ
Son Jate			Detection Cross Section	0.30%	0 10%		0
A Carl	Detector	Free H in TG	Volume	0.30%	0.10%	0.20%	
		Fiee Fill 10	Fiducial Volume	0.30%	0.20%	0.20 /0	14
			Density	0.20 /0	0.10%	0.01%	P
ANA I			H/C (Chemical Composition)	0.80%	0.80%	0.10%	te
N. Martin		Electronics	Dead Time	0.25%		0.00%	U U U
A Aller							Å
	Analysis		Analysis				X
		Particle Id					
BOPSK!		Positron	Escape	0.10%			<u>S</u>
			Capture	0.00%			
No. 1 Sec. 1			Identification Cut	0.80%	0.10%	0.10%	e e
ALC: NO		Neutron	Escape	1.00%			P
			Capture (% Gd)	0.85%	0.30%	0.30%	2
			Identification Cut	0.40%	0.10%	0.10%	60
		Anti-neutrino	Time Cut	0.40%	0.10%	0.10%	5
			Distance Cut	0.30%			
C. ANK			Unicity (neutron multiplicity)	0.50%			
and the factor			Efficiency uncert due to bkg				
A BAS	Total			2.90%	2.31%	0.46%	N7P3 & APC
Wednesday,	16 March 2011					المحمد	