

Status of NOvA

Alexandre Sousa Harvard University for the NOVA Collaboration

XIV International Workshop on "Neutrino Telescopes" Palazzo Franchetti,Venice March 16, 2011

NOvA Overview

NuMI Off-Axis ve Appearance Experiment

- 810 km baseline from Fermilab to Ash River, in northern MN
- 700 kW NuMI neutrino beam
- Near and Far detectors placed 14 mrad off the NuMI beam axis
- Search for $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ oscillations to:
- Measure θ_{13}
- Determine the neutrino mass hierarchy
- Constrain δ_{CP}

The NOvA Collaboration

140 Collaborators in 26 Institutions from 4 Countries

Argonne, Athens, Caltech, Charles, CTU Prague, Fermilab, FZU, Harvard, Indiana, Lebedev Physical Institute, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, INR Moscow, Iowa State, P.U.C. Rio de Janeiro, South Carolina, SMU, Stanford, Tennessee, Texas-Austin,Texas-Dallas, Tufts, Virginia, Wichita State, William & Mary

Off-Axis NuMI Beam

- Medium Energy NuMI configuration most favorable to look for vµ→ve oscillations over 810 km baseline
- Placing the NOvA detectors 14 mrad off the beam axis results in narrow band beam peaked at $E_v=2$ GeV
 - Drastic reduction of NC backgrounds

Off-Axis NuMI Beam

Medium Energy Tune

~=

- Medium Energy NuMI configuration most favorable to look for $v_{\mu} \rightarrow v_{e}$ oscillations over 810 km baseline
- Placing the NOvA detectors 14 mrad off the beam axis results in narrow band beam peaked at $E_v=2$ GeV
 - Drastic reduction of NC backgrounds

Dx10²⁰ POT/year of running

Alex Sousa, Harvard University

NOvA Detectors

• Far Detector:

٠

- 14 ktons, 15.6 x 15.6 x 63m, 930 planes arranged in 30 blocks of 31 planes for assembly
- Alternating horizontal/vertical measuring planes
 - 65% active mass Far Detecto 15.6m **Near Detector:** 15.6m 222 tons, 4.2 x 2.9 x 14.3m, 206 planes • 2.9m 6 blocks of 31 planes + muon catcher to range ٠
 - To be placed 14 mrad off-axis next to MINOS ND

out muons

Detector Technology

To APD Readout

Scintillation Light

Waveshifting Fiber Loop

3.9 cm

6.0 cm

Far Detector Construction

- Beneficial occupancy well under way
- Far Detector by the numbers:
 - 11.9 million liters of scintillator
 - 12 050 km of 0.7 mm optical fiber
 - II 160 PVC modules and APDs

Far Detector Factory

 Industrial-scale production and storage of FD modules will proceed in large warehouse at University of Minnesota - Expect participation of ~200 undergraduate students

• Module assembly into blocks will happen at the Far Detector Building in Ash River

Simulated Events

Topologies for simulated events in the NOvA detectors

- v_{μ} Charged-Current:
 - Long well-defined muon track, proton identified as short track with large energy deposition at the track end
- v_e Charged-Current:
 - Single shower with characteristic electromagnetic shower development

- NC with π^0 in final state:
 - Possible gaps near event vertex, multiple displaced electromagnetic showers

NOvA Physics Reach

•

10³

Antineutrinos

 $_{0.10} \left[P(\bar{
u}_{\mu} \rightarrow \bar{
u}_{e}) \stackrel{\text{NOvA far}}{\underset{\text{detector}}{\text{detector}}} \right]$

10²

90% CL Sensitivity to $\sin^2(2\theta_{13}) \neq 0$

distance (km)

0.12

0.08

0.06

0.04

0.02

0.00

10

θ₁₃=0.2

P(<u>⊽</u>μ→⊽_e)

0

0.005

0.01

Take advantage of large matter effects => 30% enhancement/suppression of oscillation probability (11% in T2K)

1 and 2 σ Contours for Starred Point for NOvA

NOVA's sensitivity to θ_{13} is one order of magnitude better 1.4 than the limit from CHOOZ $(\sin^2 2\theta_{13} < 0.15, 90\% \text{ CL})$

 NOvA may also begin to constrain the δ_{CP} parameter space

δ(π) 2 2 **(**μ**)** Q NOVA ΝΟνΑ 1.8 1.8 1.6 1.6 1.4 1.2 1.2 1 L = 810 km, 15 kT 1 $\Delta m_{32}^2 = 2.4 \ 10^{-3} \ eV^2$ 0.8 0.8 $sin^{2}(2\theta_{23}) = 1$ 0.6 0.6 3 years at 700 kW 0.4 0.4 for each v and v $-\Delta m^2 > 0$ - ∆m² < 0</p> 0.2 0.2

Neutrinos

θ₁₃=0.2

 $_{0.10} P(\nu_{\mu} \rightarrow \nu_{e}) \stackrel{\text{NOvA far}}{\text{detector}}$

 $\Delta m_{32}^2 > 0$

 $\Delta m_{32}^2 < 0$

10²

distance (km)

10³

0.12

0.08

0.02

0.00

10

0.015

0.02

0.025

 $2 \sin^2(\theta_{23}) \sin^2(2\theta_{13})$

NOvA Physics Reach

- NOvA is able to resolve ordering of neutrino mass hierarchy for large enough values of $sin^22\theta_{13}$
- 95% CL resolution of mass hierarchy for values of $\sin^2 2\theta_{13}$ to the right of the curves
- Can improve sensitivity by including additional information from a different baseline

Mass Hierarchy and 0vßß Decay

- $<m_{\nu}> \sim 20$ meV could be confirmed or ruled out in the next 10-20 years (?) by $0\nu\beta\beta$ experiments - CUORE, SuperNEMO, GERDA, SNO+, KAMLAND, etc.
- If NOvA establishes inverted ordering of the neutrino mass hierarchy and $0\nu\beta\beta$ experiments see no signal, then neutrinos are not Majorana particles

Δm^2_{32} , θ_{23} Measurement

- NOvA will improve the MINOS measurement of Δm^{2}_{32} and can measure $\sin^{2}2\theta_{23}$ to better than 2% thanks to large statistics and excellent energy resolution
- Plot shows sensitivity contours for Δm_{32}^2 at the MINOS best fit value of 2.35x10⁻³ eV² and different input values for sin²2 θ_{23}

v, \bar{v} Oscillation Parameters

 With I year each of running in neutrino and antineutrino mode, assuming the MINOS results hold, NOvA can exclude null asymmetry by more than 3σ MINOS reported a $\sim 2\sigma$ difference between best fit values for neutrino and antineutrino oscillation parameters (see L. Corwin's presentation)

v, \bar{v} Oscillation Parameters

 With 3 year each of running in neutrino and antineutrino mode, assuming the MINOS results hold, NOvA can exclude null asymmetry by more than 5σ MINOS reported a $\sim 2\sigma$ difference between best fit values for neutrino and antineutrino oscillation parameters (see L. Corwin's presentation)

NDOS Status

- Near Detector On the Surface
- Located in new surface building at Fermilab
- Exposed to NuMI beam (6.4° off-axis) and Booster beam (14° off-axis)
 2.9 m

- Muon Catcher: PVC + scintillator planes interleaved with iron plates
- Installation completed last week, commissioning ongoing
- NDOS fully assembled and taking data!

4.2 m

Alex Sousa, Harvard University

NDOS Live Time

- Plot below shows NuMI protons on target (POT) collected during NDOS physics runs
- Already ~5x10¹⁹ POT of integrated NuMI exposure

- Peak in event time distribution coincides with NuMI spill times
- NuMI neutrinos are clearly being seen in the NDOS
- Ongoing search for Booster beam neutrinos

NOvA's 1st Beam Neutrino!

~	50	100	150	200	250	300	350	400	450 z (cm)
5 × 100				Dec	15 2010				
					13,2010				
Ē									
o L									
-50 - -									
-100 -									
Ê 200									: : : : :
5 150									
100									
50									
0									
-50									
-100									-
-150									
-200 -									
	50	100	150	200	250	300	350	400	⁴⁵⁰ z (cm)

Alex Sousa, Harvard University

NOvA's 1st Beam Neutrino!

Season's greetings from the NOvA collaboration

Alex Sousa, Harvard University

XIV Neutrino Telescopes, Venice - March 16, 2011

QE v_{μ} CC Candidate

Alex Sousa, Harvard University

XIV Neutrino Telescopes, Venice - March 16, 2011

 \wedge

NDOS Physics

 Expected neutrino and anti-neutrino NuMI energy spectrum in the NDOS for 2x10²⁰ POT of Forward-Horn-Current running and 1x10²⁰ POT of Reversed-Horn-Current running

- Use data to better understand detector response
 - Improve MC simulation
 - Develop reconstruction and event selection algorithms
 - Physics opportunities:
 - Measure ν_{μ} QE cross section at 2 GeV
 - Measure ν NC/CC single π production cross section

FHC	2x10 ²⁰ POT	RHC	1x10 ²⁰ POT
v_{μ} +anti- v_{μ} CC	4500	v_{μ} +anti- v_{μ} CC	1650
(in 2 GeV peak	1500)	(in 2 GeV peak	400)
v _e +anti-v _e CC	200	v _e +anti-v _e CC	80
NC	2000	NC	800

Alex Sousa, Harvard University

NOvA Schedule

NDOS first beam neutrino	December 2010
NDOS fully commissioned	June 2011
First block of Far Detector installed	December 2011
Start of accelerator shutdown	March 2012
5 kt of Far Detector completed	October 2012
End of accelerator shutdown	December 2012
Start Near Detector operations underground	March 2013
Far Detector completed	October 2013

- All additives and 35% of total fiber on hand. All mineral oil, PVC, extrusion production, and remaining fiber purchased or contracted.
- NOvA's schedule is technically driven

Outlook

- NOvA is the flagship project of Fermilab's Intensity Frontier initiative
- On track to make several important contributions:
 - Measurement of θ_{13}
 - Determination of neutrino mass hierarchy
 - High precision measurements of $\Delta m^2{}_{32}$ and θ_{23}
- NDOS fully assembled and actively taking data. Fundamental to understanding fabrication and assembly procedures, detector response, and will provide the first physics results from NOvA
- NuMI beam upgrades and Far Detector construction on schedule to start 700 kW operations with 14 ktons in 2013
- Watch this space!

Backup Slides

Readout

- APDs sampled at 2MHz by FE electronics
- Signal recognition/zero supression done in real time by FPGA
- Minimum 30 sec full data buffer for trigger decision
- · Software-based event trigger with no dead time

Avalanche Photo Diodes:

- 85% Quantum Efficiency
- Gain~100
- cooled to -15C for 2PE dark noise

Response:

- ~30 photo-electrons from μ at far end of cell
- 4 P.E. total noise

Detector Requirements

- Large: 14 kT
- Required background suppression
 - ~50:1 for ν_{μ} CC (easy!)
 - − ~100:1 for NC
 - Maximize Hadronic/EM Separation
 Low Z, Fine Sampling per Radiation Length
- Energy Resolution
 - Small compared to width of signal peak
- → Liquid Scintillator in PVC Structure

Interaction spectra at 810km, 12km off-axis. Oscillations: Δm^2 =2.5x10⁻³eV², sin²(2 θ_{13})=0.01

Signal Selection

700 KW	Kunning	Running	
v_e CC signal	75.0	29.0	36%
Backgrounds	14.4	7.6	
NC	6.0	3.6	0.23%
$\nu_{\mu} CC$	0.05	0.48	0.004%
Intrinsic Beam v_e	8.4	3.4	14%

Assumptions: $sin^2(2\theta_{13})=0.1$ $sin^2(2\theta_{23})=1.0$ $\Delta m^2=0.0024 \text{ eV}^2$ $\delta=0$ and no matter effects

Constraining δ_{CP}

θ₂₃ Octant Ambiguity

• In combination with a reactor experiment, NO_vA can lift the octant θ_{23} degeneracy i.e.: $\theta_{23} > \pi/4$ or $\theta_{23} < \pi/4$

Sterile Neutrinos

- NOvA can search for oscillations into sterile neutrinos by looking for energydependent depletion of neutral current events in the Far Detector
- Plot showing NC energy spectrum assumes a 23% fraction of the v_{μ} oscillate into sterile neutrinos

Alex Sousa, Harvard University

XIV Neutrino Telescopes, Venice - March 16, 2011

Supernova Signal

• Primary SuperNO ν A Signal:

 $\bar{\nu}_e + p \rightarrow e^+ + n$

- For a supernova at 10kpc the total signal is expected to contain:
 - 5000 total interactions over a time span of pprox 10s
 - Half the interactions in the first second
 - Energy peaks at 20MeV and falls off to \sim 60MeV
- Challenge is triggering in real time
 - Need data driven open triggering
 - Long event buffering (\sim 30sec)
- NOvA farm 180 trigger/buffer PCs (min 30s total event buffering)

8

SciNOvA Proposal

