HPGe detector(s) for the measurements of X-rays from kaonic transitions in solid targets at DAPHNEat DAPHNE

Damir Bosnar

Department of Physics, University of Zagreb, Zagreb, Croatia and SIDDHARTA-2 collaboration

• Preparation of the measurement of the charged kaon mass with HPGe detector at DAPHNE

• Properties of the existing HPGe detectors

Croatian Science Foundation Project 8570

Nuclear E2 resonance effects in kaonic molybdenum isotopes, online 08.04.2022.

Motivation

- The accuracy of the determination of the charged kaon mass $(m_{\kappa}=493.677\pm0.013 \text{ MeV}, 26 \text{ p.p.m.})$ is much less than the accuracy of the charged pion mass $(m_{\pi}=139.57061\pm0.00023 \text{ MeV}, 1.6 \text{ p.p.m.})$, PDG2020.
- Serious disagreement between the two precise measurements

->Large scaling factor: S=2.4 (*m_k*=493.677±0.005 MeV)

- Kaon mass has large influence on the K⁻N scattering lengths and through them on the kaon-nucleon sigma terms and eventually degree of chiral symmetry breaking.
- Kaonic atoms, charmed mesons, searches beyond standard model

Previous measurements, **motivation** PDG 2020:

The main disagreement is between the two most recent and precise measurements (x-ray energies from kaonic atoms):

m_k=493.696±0.007 MeV

A.S. Denisov et al. JEPT Lett. 54 (1991)558

K⁻¹²C, crystal diffraction spectrometer

(6.3 eV at 22.1 keV), 4f-3d

FIG. 1. Right and left reflections of the 4/-3d transition of the $K^{--1/2}C$ atom. The interferometer readings are plotted along the abscissic, the detector count rate per 10²⁰ protons is plotted along the ordinate. The vertical lines are the experimental values with the corresponding error; the heavy points are the results of a 6⁴

m_κ=493.636±0.011 MeV

K.P. Gall et al. Phys. Rev. Lett. 60 (1988)186
K⁻ Pb, K⁻ W; HPGe detector (1 keV), K⁻Pb (9 -> 8),
K⁻Pb (11 -> 10), K⁻W (9 -> 8), K⁻W (11 -> 10),

FIG. 1. Untagged Pb x-ray spectrum showing intense kaonic x-ray transitions.

Average m_{K} =493.679 ± 0.006 MeV S=2.4

Principles of measurements of kaon mass in kaonic atoms

- Measure X-ray energies in kaonic atoms for transitions not influenced by strong interactions.
- In order to determine the kaon mass, the experimental energies have to be compared with the calculated energies obtained with a certain K-mass value (corrections: vacuum polarization, electron screening, non-circular trasitions)
- Measurements with HPGe detectors and with crystal diffraction spectrometer, TES, ...

Kaonic atom formation Kaon cascade -> X-rays Kaon absorption

X-ray energies in kaonic atoms

Interesting X-rays from the the transitions in the middle of spectrum:

- No influence from strong interaction
- avoid electron screening of nuclei

```
e+e-- -> φ -> K<sup>+</sup>K<sup>-</sup>, E<sub>κ</sub> ≈ 16 MeV
```


-> Our aim is to do measurements with HPGe detector(s) during SIDDHARTA-2 run at DA ϕ NE - using the available space at the SIDDHARTA-2 interaction region and with different solid targets.

SIDDHARTA-2 at DA ϕ **NE** Silicon Drift Detector for Hadronic Atom Research by Timing Application

2021/2022 SIDDHARTA-2 run: X-ray transitions in gaseous targets: deuterium, helium, ...

Advantage: DA ϕ NE is producing low momenta kaon pairs – no need for degrader. No secondary particles in the beam.

Disadvantage: High electromagnetic background from the beam close to the interaction point (unknown!). Background originating from the kaons absorbed in nuclei.

Measurement at DA ϕ NE with HPGe during SIDDHARTA-2 run

HPGe detector system is independent of SIDDHARTA-2

Signal from the luminometer (80x40x2 mm³) as a trigger for HPGe detector.

-> Hardware preparations

-> Simulations (GEANT4)

HPGe in DAPHNE – drawing, reality

Measurement at DA ϕ NE with HPGe during SIDDHARTA-2

BSI HPGe detector with

transistor reset preamplifier (TRP).

HPGe active detector diameter ~60 mm, height ~60 mm.

Data acquisition:

- analog electronics
- fast pulse digitizer

3.1.	Detection	unit	GCD-30185	characteristics
------	-----------	------	-----------	-----------------

#	Parameter	Value	
1.	Relative efficiency (with respect to 3'' x 3'' NaI detector and Co-60 source mounted 25 cm above the detector) at 1.33 MeV γ -photon	> 30 %	
2.	Energy resolution* at • 122 keV • 477.6 keV • 1.33 MeV *Measured with spectrometric device MS Hybrid at input count rate 1000 pulses/sec, shaping time constant = 6 µsec	875 eV 1400 eV 1850 <u>+</u> 30 eV	
3.	Peak shape: • FWTM/FWHM • FW.02M/FWHM	< 1.9 < 2.65	
4.	Spectral Broadening of FWHM up to 100,000 counts/sec for 1.33 Mev	< 8 %	
5.	Peak position shift	<+/- 0.018 %	
6.	Peak to Compton ratio, not worse	58:1	
7.	Energy range of detector operation	40 keV - 3 MeV	
8.	Material of input window	Al	
9.	Cooling time	< 8 hours	
10.	Liquid nitrogen holding time in Dewar vessel	> 15 days	
11.	Dewar volume	301	
12.	 Preamplifier (built – in detector capsule) with cooled FET and transistor reset preamplifier (TRP) Preamplifier power supply is ±12 V with 9 pin connector compatible with NIM standards TTL signal to shut down the HV: - detector warm -0V; - detector cold: +5V 		
	HV INHIBIT – BNC		

Laboratory tests of HPGe (BSI - TRP preamp) & analog electronics

Signal from preamp of HPGe with TRP

CAEN spectroscopy amplifier N968, Canberra Multiport II, Canberra Genius DAQ + analysis

Signal from spectroscopy amplifier

Pb lines

Stability tests

1.11 keV at 356 keV 1.67 keV at 1330 keV

Laboratory tests of HPGe (BSI - TRP preamp) & fast pulse digitizer, CAEN DT5781 4 ch, 14 bit,

CAEN DT5781 4 ch, 14 bit, 10ns sampling time

Signal from spectroscopy amplifier $\sim 20 \ \mu s$ (shaping time 6 μs), restriction on the rate.

Signal from HPGe with RC preamp

Signal from preamp of HPGe with TRP

 Digital Pulse Processing for Pulse Height Analysis firmware, based on V.T. Jordanov et al. Nucl. Instr. Meth. A 353 (1994) 337

Possible rates up to 150 kHz, something worse resolution

• Coincidences – HPGe + luminometer

Adjustment of the parameters for energy reconstruction

V.T. Jordanov et al. Nucl. Instr. Meth. A 353 (1994) 337

137Cs				Import	Ехро
Input Signal Trigger	Energy Filter				
BaseLine Mean	Rise Time (us	s)	Decay	Time (us	s)
1024 ~	3.00	-	4.80		-
	Flat Top (us)	Peak	Delay (%	.)
Baseline Clip	2.00	-	50.00		\$
HiRe	es Bal HiF	late	Man -		-
Peak Me Peak HoldOff (BaseLine HoldOff (es Bal HiF ean 1 us) 1.00 us) 0.50	late	Man -	**	

Laboratory tests (Zagreb) of HPGe (BSI - TRP preamp) & fast pulse digitizer, CAEN DT5781 4 ch, 14 bit,

CAEN DT5781 4 ch, 14 bit, 10ns sampling time

Low rates – same resolution as with conventional electronics High rates – 10-20% worse resolution

 Digital Pulse Processing for Pulse Height Analysis firmware , based on V.T. Jordanov et al. Nucl. Instr. Meth. A 353 (1994) 337

Tests: ¹³³Ba

HPGe at the LNF, July 2021, holder + shielding, tests Oct., Nov. 2021

Tests in the lab at LNF, ¹³³Ba

Resolution, at 302.9 keV:

FWHM ~ 1.33 keV (1.4 keV?)

(analysis of the data from binary file, event on event basis)

(Resolution with analog electronics: 1.06 keV):

Measurements of the background in DAPHNE, without beam, 1 day of measurement

Waiting for the tests and measurements with the beam...

Simulations – GEANT4

- To estimate the thickness and size of the target, setup configuration and HPGe efficiency
- To estimate background from the beam (?) and from the kaon absorption and to determine optimal position of the detector and target (+ target size) and shielding .
- To estimate required time for the measurements.

 Not all parameters are known: beam background !? – test measurements with the beam are required.

Simple GEANT4 Simulations – HPGe efficiency

X-rays are generated in the lead plate

E(keV) (trans.)	Eff. (%)	Eff. (%)
	(0.3 mm)	(1.1 mm)
90.9 $(13 \to 12)$	0.36	0.11
$116.9 \ (12 \to 11)$	0.50	0.19
$153.9 \ (11 \to 10)$	0.64	0.34
$208.2 \ (10 \to 9)$	0.72	0.51
$291.6 \ (9 \rightarrow 8)$	0.76	0.65
$426.2 \ (8 \to 7)$	0.76	0.71

d (mm)	Eff. (%)	Eff. (%)
	(0.3 mm)	(1.1 mm)
110	1.28	1.09
150	0.76	0.65
200	0.45	0.38
300	0.21	0.18
400	0.12	0.11
500	0.07	0.06

Table 1. Efficiencies of the HPGe detector for the X-rays from transitions in kaonic lead for two thicknesses of the target, left. Efficiencies of the HPGe detector for different distances of the HPGe detector from the target, for the X-rays of 291.6 keV and two thicknesses of the target (0.3 mm and 1.1 mm).

D. Bosnar et al. Acta Phys. Pol.B51 (2020) 115

GEANT4 full simulation

CAD drawing

GEANT4 simulation

CAD files for selected objects are converted in GEANT4 gdml files for geometry description, different materials are taken into account

GEANT4 full simulation

Approx. 50 events (291.6 keV) / pb⁻¹, 12 pb⁻¹ /day -> approx. 600 events/day.

~9.000 events -> 10 keV precision (15 days) ~25.000 events-> 5 keV precision (40 days)

Kaons are generated uniformly in 4π Only hadronic background., no background from e+e- beams Front shielding of HPGe detector should be optimized

GEANT4 full simulation

Electromagnetic background ? -> Measurements in the hall

Electromagnetic background will not have influence on this spectra (coincidence luminometer + HPGe), but it can lead to too big pile-ups in the HPGe

Second HPGe detector

Application for a new HPGe detector and electronics in 2022 ?

Thank you for your attention !

Backup slides

1pb-1 (~2h)

