

Front-end Electronics for Nuclear Physics

Riccardo Introzzi

by Physics Department - INFN PoliTO

November 6, 2010

Signals in Nuclear Physics

- Detector Overview
 - Particle Detectors
 - Detector Signals
 - Detector Examples

Signal Aquisition

- 2 Signal Acquisition
 - Nyquist Theorem
 - DAQ
 - Basic Front-end
- Functional Blocks
 - PreAmp
 - Anti-aliasing
 - S/H
 - ADC
 - Multiplexer
- Fast Transient Acquisition
 - Analog Memory
 - Fast Sampling
 - Fast Switches

Signal Aquisition

- 2 Signal Acquisition
 - Nyquist Theorem
 - DAQ
 - Basic Front-end
- § Functional Blocks
 - PreAmp
 - Anti-aliasing
 - S/H
 - ADC
 - Multiplexer
- Fast Transient Acquisition
 - Analog Memory
 - Fast Sampling
 - Fast Switches

Signal Aquisition

- Signal Acquisition
 - Nyquist Theorem
 - DAQ
 - Basic Front-end
- Functional Blocks
 - PreAmp
 - Anti-aliasing
 - S/H
 - ADC
 - Multiplexer
- Fast Transient Acquisition
 - Analog Memory
 - Fast Sampling
 - Fast Switches

- Fast Signal Acquisition
- 6 Shaper
 - Pulse integrator
 - PD
 - PHA
- Discriminator
 - CFD
- Time Measurement
 - TAC
 - TDC
 - Mean Timer

- 5 Fast Signal Acquisition
- 6 Shaper
 - Pulse integrator
 - PD
 - PHA
- Discriminator

 CFD
- Time Measurement
 - TAC
 - TDC
 - Mean Timer

- 5 Fast Signal Acquisition
- 6 Shaper
 - Pulse integrator
 - PD
 - PHA
- Discriminator
 - CFD
- Time Measurement
 - TAC
 - TDC
 - Mean Timer

- 5 Fast Signal Acquisition
- 6 Shaper
 - Pulse integrator
 - PD
 - PHA
- Discriminator
 - CFD
- Time Measurement
 - TAC
 - TDC
 - Mean Timer

Part I

Signals in Particle Physics

lonizing radiation detectors:

- Gas chambers
 - Ionization chambers
 - Proportional Counters HV: charge multiplication, (1 keV, 100 keV)
 - Geiger Counters fixed-size pulses: no energy information
- Scintillators with Photo Multiplier Tubes (PMT)
 - NaI(TI) 6% energy resolution, (10 keV, 10 GeV), 1 μ s pulses
 - Plastic poorer resolution, 10 ns pulses
 - Liquid 'cocktails' mixed with radioisotopes
- Solid State detectors @ 77 K
 - Si(Li) (1 keV, 50 keV), 2.5% energy resolution
 - Ge(Li) (10 keV, 10 MeV), 0.14% energy resolution
 - High Purity Germanium Detectors (HPGe) Intrinsic semiconductor

lonizing radiation detectors:

- Gas chambers
 - Ionization chambers
 - Proportional Counters HV: charge multiplication, (1 keV, 100 keV)
 - Geiger Counters fixed-size pulses: no energy information
- Scintillators with Photo Multiplier Tubes (PMT)
 - Nal(Tl) 6% energy resolution, (10 keV, 10 GeV), 1 μ s pulses
 - Plastic poorer resolution, 10 ns pulses
 - Liquid 'cocktails' mixed with radioisotopes
- Solid State detectors @ 77 K
 - Si(Li) (1 keV, 50 keV), 2.5% energy resolution
 - Ge(Li) (10 keV, 10 MeV), 0.14% energy resolution
 - High Purity Germanium Detectors (HPGe) Intrinsic semiconductor

lonizing radiation detectors:

- Gas chambers
 - Ionization chambers
 - Proportional Counters HV: charge multiplication, (1 keV, 100 keV)
 - Geiger Counters fixed-size pulses: no energy information
- Scintillators with Photo Multiplier Tubes (PMT)
 - Nal(TI) 6% energy resolution, (10 keV, 10 GeV), 1 μ s pulses
 - Plastic poorer resolution, 10 ns pulses
 - · Liquid 'cocktails' mixed with radioisotopes
- Solid State detectors @ 77 K
 - Si(Li) (1 keV, 50 keV), 2.5% energy resolution
 - Ge(Li) (10 keV, 10 MeV), 0.14% energy resolution
 - High Purity Germanium Detectors (HPGe) Intrinsic semiconductor

Ionizing radiation detectors:

- Gas chambers
 - Ionization chambers
 - Proportional Counters HV: charge multiplication, (1 keV, 100 keV)
 - Geiger Counters fixed-size pulses: no energy information
- Scintillators with Photo Multiplier Tubes (PMT)
 - NaI(TI) 6% energy resolution, (10 keV, 10 GeV), 1 μ s pulses
 - Plastic poorer resolution, 10 ns pulses
 - Liquid 'cocktails' mixed with radioisotopes
- Solid State detectors @ 77 K
 - Si(Li) (1 keV, 50 keV), 2.5% energy resolution
 - Ge(Li) (10 keV, 10 MeV), 0.14% energy resolution
 - High Purity Germanium Detectors (HPGe) Intrinsic semiconductor

- Surface-barrier detectors @ 300 K, (1 Mev, 100 MeV), 0.2% energy resolution
 - Si(Li)
 - Ge(Li)
- Cherenkov detectors Cherenkov 'light boom', above 1 GeV
- Ionization chambers Ar, single or multi wire or plate electrodes
- Shower chambers liquid Ar, 'calorimeters'
- Scintillators with UV PMT gas or liquid, very fast
 - Ar
 - Xe
- Drift chambers gas volume criss-crossed by wire arrays with applied voltage to drift out ions and track particle paths
 - Ar-ethane mixture 0.2 mm spatial resolution

- Si(Li)
- Ge(Li)
- Cherenkov detectors Cherenkov 'light boom', above 1 GeV
- Ionization chambers Ar, single or multi wire or plate electrodes
- Shower chambers liquid Ar, 'calorimeters'
- Scintillators with UV PMT gas or liquid, very fast
 - Ar
 - Xe
- Drift chambers gas volume criss-crossed by wire arrays with applied voltage to drift out ions and track particle paths
 - Ar-ethane mixture 0.2 mm spatial resolution

- Surface-barrier detectors @ 300 K, (1 Mev, 100 MeV), 0.2% energy resolution
 - Si(Li)
 - Ge(Li)
- Cherenkov detectors Cherenkov 'light boom', above 1 GeV
- Ionization chambers Ar, single or multi wire or plate electrodes
- Shower chambers liquid Ar, 'calorimeters'
- Scintillators with UV PMT gas or liquid, very fast
 - Ar
 - Xe
- Drift chambers gas volume criss-crossed by wire arrays with applied voltage to drift out ions and track particle paths
 - Ar-ethane mixture 0.2 mm spatial resolution

- Si(Li)
- Ge(Li)
- Cherenkov detectors Cherenkov 'light boom', above 1 GeV
- Ionization chambers Ar, single or multi wire or plate electrodes
- Shower chambers liquid Ar, 'calorimeters'
- Scintillators with UV PMT gas or liquid, very fast
 - Ar
 - Xe
- Drift chambers gas volume criss-crossed by wire arrays with applied voltage to drift out ions and track particle paths
 - Ar-ethane mixture 0.2 mm spatial resolution

- Si(Li)
- Ge(Li)
- Cherenkov detectors Cherenkov 'light boom', above 1 GeV
- Ionization chambers Ar, single or multi wire or plate electrodes
- Shower chambers liquid Ar, 'calorimeters'
- Scintillators with UV PMT gas or liquid, very fast
 - Ar
 - Xe
- Drift chambers gas volume criss-crossed by wire arrays with applied voltage to drift out ions and track particle paths
 - Ar-ethane mixture 0.2 mm spatial resolution

- Surface-barrier detectors @ 300 K, (1 Mev, 100 MeV), 0.2% energy resolution
 - Si(Li)
 - Ge(Li)
- Cherenkov detectors Cherenkov 'light boom', above 1 GeV
- Ionization chambers Ar, single or multi wire or plate electrodes
- Shower chambers liquid Ar, 'calorimeters'
- Scintillators with UV PMT gas or liquid, very fast
 - Ar
 - Xe
- Drift chambers gas volume criss-crossed by wire arrays with applied voltage to drift out ions and track particle paths
 - Ar-ethane mixture 0.2 mm spatial resolution

- Si(Li)
- Ge(Li)
- Cherenkov detectors Cherenkov 'light boom', above 1 GeV
- Ionization chambers Ar, single or multi wire or plate electrodes
- Shower chambers liquid Ar, 'calorimeters'
- Scintillators with UV PMT gas or liquid, very fast
 - Ar
 - Xe
- Drift chambers gas volume criss-crossed by wire arrays with applied voltage to drift out ions and track particle paths
 - Ar-ethane mixture 0.2 mm spatial resolution

In general a detection event causes a current burst

- fast voltage ramp (usually negative)
- slower exponential-like decay (\sim 5 ns)

Anode voltage [V] pulse in a PMT vs time [s]

- collected charge number (e.g. energy spectroscopy in ionization chambers)
 - the integral of the pulse signal has to be derived
- maximum pulse voltage (e.g. energy spectroscopy in scintillators)
 - the maximum of voltage peak must be found
- pulse timing (e.g. Time of Flight (TOF) in Scintillators)
 - a characteristic time of the pulse shaping is needed
- detection of spatial position/s (e.g. drift chambers, TOF-walls)
 - many different channels are necessary and/or timing post-processing
- trajectory (e.g. particle recognition in drift chambers with magnetic field)
 - trajectory bending: R = p/(ZeB)
 - heavy post-processing from multi-channel signals is required

- collected charge number (e.g. energy spectroscopy in ionization chambers)
 - the integral of the pulse signal has to be derived
- maximum pulse voltage (e.g. energy spectroscopy in scintillators)
 - the maximum of voltage peak must be found
- pulse timing (e.g. Time of Flight (TOF) in Scintillators)
 - a characteristic time of the pulse shaping is needed
- detection of spatial position/s (e.g. drift chambers, TOF-walls)
 - many different channels are necessary and/or timing post-processing
- trajectory (e.g. particle recognition in drift chambers with magnetic field)
 - trajectory bending: R = p/(ZeB)
 - heavy post-processing from multi-channel signals is required

- collected charge number (e.g. energy spectroscopy in ionization chambers)
 - the integral of the pulse signal has to be derived
- maximum pulse voltage (e.g. energy spectroscopy in scintillators)
 - the maximum of voltage peak must be found
- pulse timing (e.g. Time of Flight (TOF) in Scintillators)
 - a characteristic time of the pulse shaping is needed
- detection of spatial position/s (e.g. drift chambers, TOF-walls)
 - many different channels are necessary and/or timing post-processing
- trajectory (e.g. particle recognition in drift chambers with magnetic field)
 - trajectory bending: R = p/(ZeB)
 - heavy post-processing from multi-channel signals is required

- collected charge number (e.g. energy spectroscopy in ionization chambers)
 - the integral of the pulse signal has to be derived
- maximum pulse voltage (e.g. energy spectroscopy in scintillators)
 - the maximum of voltage peak must be found
- pulse timing (e.g. Time of Flight (TOF) in Scintillators)
 - a characteristic time of the pulse shaping is needed
- detection of spatial position/s (e.g. drift chambers, TOF-walls)
 - many different channels are necessary and/or timing post-processing
- trajectory (e.g. particle recognition in drift chambers with magnetic field)
 - trajectory bending: R = p/(ZeB)
 - heavy post-processing from multi-channel signals is required

- collected charge number (e.g. energy spectroscopy in ionization chambers)
 - the integral of the pulse signal has to be derived
- maximum pulse voltage (e.g. energy spectroscopy in scintillators)
 - the maximum of voltage peak must be found
- pulse timing (e.g. Time of Flight (TOF) in Scintillators)
 - a characteristic time of the pulse shaping is needed
- detection of spatial position/s (e.g. drift chambers, TOF-walls)
 - many different channels are necessary and/or timing post-processing
- trajectory (e.g. particle recognition in drift chambers with magnetic field)
 - trajectory bending: R = p/(ZeB)
 - heavy post-processing from multi-channel signals is required

- collected charge number (e.g. energy spectroscopy in ionization chambers)
 - the integral of the pulse signal has to be derived
- maximum pulse voltage (e.g. energy spectroscopy in scintillators)
 - the maximum of voltage peak must be found
- pulse timing (e.g. Time of Flight (TOF) in Scintillators)
 - a characteristic time of the pulse shaping is needed
- detection of spatial position/s (e.g. drift chambers, TOF-walls)
 - many different channels are necessary and/or timing post-processing
- trajectory (e.g. particle recognition in drift chambers with magnetic field)
 - trajectory bending: R = p/(ZeB)
 - heavy post-processing from multi-channel signals is required

- Trigger detector based on a scintillator
 - The START pulse resolution is O(300 ps), with long tails

Ionization Chamber

- Drift Chamber (very small one)
 - Hexagonal cell: 0.5 cm radius
 - \bullet Spatial resolution O(100-200) μ m

• Drift Chamber (very small one)

- TOF-wall
 - based on plastic scintillator
 - slabs are 1.10 m long, 2.5cm wide and 1 cm thick with a PMT at each edge

TOF-wall

Part II

Signal Acquisition

Nyquist Theorem

ullet Consider a generic time signal x(t) which has to be sampled

- \bullet The sampled signal can be built multiplying by a δ comb ${\cal T}$ spaced in time
 - INFN

 \bullet T is the sampling period

$$x_{\delta}(t) = \sum_{i=-\infty}^{+\infty} Tx(iT)\delta(t-iT)$$
$$= x(t)T\sum_{i=-\infty}^{+\infty} \delta(t-iT)$$

- ullet Define $\Delta(f)$ as the Fourier transform of the time δ comb
 - \bullet the spectrum of a time δ comb is a frequency δ comb
 - ullet $f_s=1/{\it T}$ be the sampling frequency

$$\Delta(f) = \mathscr{F}\left[T\sum_{i=-\infty}^{+\infty} \delta(t-iT)\right]$$
$$= \sum_{i=-\infty}^{+\infty} \delta(f-if_s)$$

 Recall the Fourier transform of the product of two functions: convolution product (*) of the respective spectra

$$\mathscr{F}[z(t)y(t)] = \int_{-\infty}^{+\infty} X(a)Y(f-a)da$$
$$= X(f) \star Y(f)$$

• X(f) be the Fourier transform of x(t)

- $X_{\delta}(f)$ be the Fourier transform of $x_{\delta}(t)$
- $X_{\delta}(f)$ is the convolution product of X(f) and $\Delta(f)$

$$X_{\delta}(t) = X(f) \star \Delta(f)$$

$$= \sum_{i=-\infty}^{+\infty} X(f - if_s)$$

• The spectrum $X_{\delta}(f)$ of the sampled signal is the sum of infinite replicas of the spectrum X(f) of the original signal shifted f_s away one from each other

- The Nyquist rule grants the tails of successive replicas do not overlap
 - \bullet given the bandwidth extension B of the original spectrum and the sampling frequency f_{s}

$$f_s \geq 2B$$

 Low-pass filtering the base band replica the original signal can be reconstructed

- the task is ideally performed by the Nyquist interpolator: a rectangular low-pass filter
 - the Nyquist pass-band coincides with the bandwidth B of the original signal

Aliasing and Sub-sampling

- It is evident when a given harmonic line is focused
 - in the example a 3 kHz sinusoid, sampled @ 8 kHz, shows ambiguity with a 2 kHz sinusoid

Data Acquisition System

Analog-digital conversion involves two discretization processes:

- sampling
 - continuous time → discrete time
 - non perfect low-pass filtering for anti-aliasing
 - approximation by real interpolators (real low-pass filter, HW/SW)
- discretization
 - ullet continuous amplitude o discrete amplitude
 - approximation given by the Least Significant Bit (LSB)

Data Acquisition System

Analog-digital conversion involves two discretization processes:

- sampling
 - continuous time → discrete time
 - non perfect low-pass filtering for anti-aliasing
 - approximation by real interpolators (real low-pass filter, HW/SW)
- discretization
 - o continuous amplitude → discrete amplitude
 - approximation given by the Least Significant Bit (LSB)

Data Acquisition System

Analog-digital conversion involves two discretization processes:

- sampling
 - continuous time → discrete time
 - non perfect low-pass filtering for anti-aliasing
 - approximation by real interpolators (real low-pass filter, HW/SW)
- discretization
 - $\bullet \ \ continuous \ amplitude \rightarrow discrete \ amplitude$
 - approximation given by the Least Significant Bit (LSB)

Basic Front-end

- Pre-amplifier
- Anti-aliasing filter
- Sample & Hold (S/H)
- Analog to Digital Converter (ADC)
- Multiplexer (MUX)

Pre-amplifier

Features:

- first stage amplification:
 - maximizes Signal to Noise Ratio (SNR)
 - \bullet adapts voltage levels to the next measurement stage
- low output impedance, considerable current drive
 - buffers the input signal
 - sinks interference current injection: preserve SNR
- OpAmp configuration with SW-tunable feedback are common
 - differential input stage: common mode interference rejection
 - issues on bandwidth, stability and slew-rate require careful design
- pulse current integration is possible with capacitive feedback
 - charge summation is converted to voltage amplitude
 - drift due to input offset currents must be avoided

Trans-impedance and Voltage amplifiers

- trans-impedance amplifier for high source impedance
- voltage amplifier for low source impedance

Signal and Noise

Detectors usually provide very low-level output signals

- many source of noise and disturbance can overrun the signal
- careful design is needed especially for the first stage

Signal and Noise

- First stage equivalent noise remains at the input of the chain
- second stage contributes at the input only with its voltage equivalent noise, divided by the first stage gain

Anti-aliasing Filter

- Low-pass filters are used to avoid aliasing effects
- filters can be implemented in amplifier feedback
- high order filters would be required to take advantage of the full ADC bandwidth
 - trade-off between high slope frequency cutoff and filter size and complexity
 - single pole feedback and OpAmp poles are exploited

Sample & Hold

Fast signals are sampled and then hold during A/D conversion time

- Capacitors as analog memory
 - droop issue: charge/discharge due to read-out Ioff
- CMOS Transmission gates as switching elements
 - signal feed-through issue: via CDS of the switch

Analog To Digital Converter (ADC)

- A/D Flash
- Successive Approximations Register (SAR)
- Double ramp A/D
- Source Follower Residue Amplification

ADFlash

- comparator array (one for each output bit)
- resistive reference scale
 - ullet ratiometric (voltage divider), variable V_{ref}
 - no missing code
 - high precision R needed
 - high power consumption (resistive scale)
- high speed (parallel computation)

SAR ADC

- single comparator
- feedback Digital to Analog Converter (DAC) provide voltage references
- logic controls successive approximations of the input signal
 - up/down counter strategy
 - bisection technique

SAR ADC

Up/down counter

- "digital voltage follower": 1 LSB fluctuation around the input
- long transient at start-up
- single step conversion once the signal is "locked"

Bisection technique

• conversion time: $T_c = N_{bit} T_{ck}$

Double Ramp ADC

Two phases method

- fixed-time integration of input
- known-voltage de-integration till the output nulls
- de-integration time is proportional to input
 - a counter is controlled by comparator output

Source Follower Residue Amplification ADC

State of the art ADC

- pipeline of N_{bit} identical stages
- simple working principle:

•
$$bit_n = 1 \iff V_{in \ n} - V_{bit_n} > 0$$

•
$$V_{residue n} = V_{in} - V_{bit_n} bit_n$$

•
$$V_{out}$$
 $p = 2V residue$

- dynamic source follower
- ullet 1 conversion at each pipeline step, just a delay of N_{bit} steps!
- J. Hu, N. Dolev and B. Murmann:

"A 9.4-bit, 50 Ms/s, 1.44 mW Pipelined ADC using Dynamic Source Follower Residue Amplification",

IEEE Journal of Solid State Circuits, 44 4, 2009

Source Follower Residue Amplification ADC

Residue amplification implementation:

- OpAmp based
 - cumbersome for power consumption
- MOS based
 - exploits transistor characteristic capacitances

Multiplexer

- Multiplexer (MUX) are switch array controlled by logic
 - \bullet transmission gate implementation in analog MUX bidirectional
 - more switches can be on together (e.g. SAR DAC)

Fast Transient Acquisition

Analog Memory

- Analog Memories: array of S/H cells
 - ullet Dead Time o Pipeline

Very Fast Control Logic

- sampling on both clock edges
- clock multiplication with local Phase Locked Loop (PLL)
- fast shift register with custom Flip/Flop
- delay line: logic gate propagation
 - Clock period variation with temperature

Fast Switches

- CMOS transmission gate low and constant conductance
- Diode bridge very fast switching, inductors needed

Part III

Fast Data Acquisition

- pulse amplitude or area
- e timing detection
- oposition detection

- pulse amplitude or area
- e timing detection
- position detection

- pulse amplitude or area
- timing detection
- position detection

- pulse amplitude or area
- timing detection
- position detection

Shaper

- Amplifier: see pre-amplifier in DAQ
- Pulse integrator: provides a signal proportional to the pulse area
 - Proportional Counters are based on integrators as detector read-out
- Pulse detector (PD): outputs the maximum of the peak with a peak detect flag signal
 - Pulse Height Analyzers (PHA) use PDs as detector read-out

Pulse integrator

- Exploits a capacitive feedback (i.e. $\mathscr{F}\left[\int .dt\right] = \frac{1}{j\omega C}$)
- OpAmp offset currents can give rise to output drifts
- An Operational Transconductance Amplifier (OTA) controls the DC output - Baseline Holder (BLH)

Peak detector

Flags a peak detection and hold the peak maximum

- exploits unidirectional element
- a capacitor is charged up to the peak maximum and then holds the level

Pulse detector

PDs are simply implemented in CMOS technology

Pulse Height Analyzer

- PDs coupled with ADCs allow to record the pulse height
- Pulse Height Analyzers (PHA) perform energy spettroscopy with a variety of detectors
 (e.g. proportional counters, scintillators, solid state detectors and surface barier detectors)
 - based on a PD-ADC system driving a multichannel scale counter

Discriminator

- Often pulses occur with different amplitude and mostly the same shape
- Threshold comparators undergo time-walk errors
- Constant Fraction Discriminator (CFD) allow accurate timing

- split the input in two
- delay the other
- feed them to a comparator
- the output triggers at a constant fraction of the peak height
 - e.g. 15% for peak rising-edge linearity in scintillator

- split the input in two
- attenuate one
- delay the other
- feed them to a comparator
- the output triggers at a constant fraction of the peak height
 - e.g. 15% for peak rising-edge linearity in scintillator

- split the input in two
- attenuate one
- delay the other
- feed them to a comparator
- the output triggers at a constant fraction of the peak height
 - e.g. 15% for peak rising-edge linearity in scintillator

- split the input in two
- attenuate one
- delay the other
- feed them to a comparator
- the output triggers at a constant fraction of the peak height

- split the input in two
- attenuate one
- delay the other
- feed them to a comparator
- the output triggers at a constant fraction of the peak height
 - e.g. 15% for peak rising-edge linearity in scintillator

Refined operation

- when the input is steady the two replicas are at the same level
- the comparator output fluctuates between the high and low logic levels
 - on average it should be midway useful for calibration
- output enabled by a parallel threshold discriminator in proper conditions

Time Measurement

Main functional circuits for time measurement:

- Time to Amplitude Converter (TAC)
- Time to Digital Converter (TDC)
- Mean Timer

Time to Amplitude Converter

- INFN
- a capacitor is charged at constant current between start and stop edges
- the resulting voltage is proportional to the start-stop interval
- TAC interpolates time between a pulse and a suitable clock edges
- high precision timing with respect to clock edges

Time to Digital Converter

A TDC is simply made by coupling a TAC with an ADC

Mean Timer

- ullet Capacitor C is pre-charged at V_{ref}
- ullet each pulse starts a current generator at times t_1 and t_2
- ullet the generators sink a charge $I\Delta t$ from C till the comparator fires

Mean Time

 $V_C=0
ightarrow \Delta V = V_{ref}$ when the comparator fires

$$\Delta t_1 = t - t_1 \quad \Delta t_2 = t - t_2$$
 $-C\Delta V = I\Delta t_1 + I\Delta t_2$
 $= I(t - t_1 + t - t_2)$
 $= I(2t - (t_1 + t_2))$
 $-\frac{C\Delta V}{I} = 2t - t_1 - t_2$

• the output is fired at a time t given by the mean time of t_1 and t_2 plus a constant delay

$$t = \frac{t_1 + t_2}{2} + \frac{C|\Delta V|}{2I}$$

Detector Examples

TOF-wall element

Conclusions

Radiation Physycs front-end electronics

- highly demanding requirements of fast analog processing
- most solutions are as simple as possible but smart!
- a number of functional blocks available for several detector types
- the ultimate speed performance limits are technology related (e.g. CMOS, parassitic elements, ...)
- what comes next to front-ends: a Huge data trasmission and processing task!

THE END

Thanks for your attention

