The Electron-Ion Collider Case

Marco Contalbrigo – INFN Ferrara

Meeting - 6th April 2022

C I - I		
Contai	nrigo	IVI
0011001	8.90	

EIC Timeline

EIC Accelerator

EIC Detector

Alternative options

M. Contalbrigo

Common challenge for endcap PID is

Ring-imaging in high magnetic field

2.5T solenoid

CORE in SketchUp

Meeting 6th April 2022

EIC PID R&D

R&D for photo-sensors: single-photon sensitivity in high-magnetic field

Silicon photomultipliers (SiPM)

@ low-T with dedicated ASICS and DAQ for fast and precise timing note: high dark rate, moderate radiation tolerance

Large-area Picosecond Photodetecgtor (LAPPD)

cost-effective microchannel plate detectors note: still under development

with (AI) streaming readout

R&D for aerogel section:

High transparency aerogel at low refractive index (n=1.02)

R&D for gaseous section:

High-pressure Argon as alternative to greenhouse gases

Dual Radiator RICH @ EIC

Two challenges: cover wide momentum range 3 - 60 GeV/c work in high (~ 1T) magnetic field

dRICH: effective solution, part of EIC reference detector

Radiators: Aerogel (n_{AERO} ~1.02) + Gas (n_{C2F6} ~1.0008)

Detector: 0.5 m²/sector , 3x3 mm² pixel. \rightarrow SiPM option

Phase Space:

- Polar angle: 5-25 deg
- Momentum: 3-60 GeV/c