Cesium Run and LY Extraction DArT Analysis

Timothée Hessel — Thursday 21th April 2022

Summary

- Analysis on ¹³⁷Cs run
 - Relative gain calibration
 - Background subtraction
- Monte Carlo spectrum fit
 - Convolution model
 - Charge Yield (QY) and fano factor (F) measurement
- Effective Light Yield (LY) extraction
 - Gain and LY calculation
 - From the spectrum
 - From the α peaks

Analysis on ¹³⁷**Cs run** Relative gain calibration

- Minimisation performed on background run of : $\chi^2 = ROI_0 - ROI_1 \times scale$
- Uncertainty obtained at intersection with $\chi^2 = 1$: $scale = 0.878 \pm 0.002$
- ¹³⁷Cs run presents some asymmetry. Therefore, this scale is applied to all spectra for consistence.

Analysis on ¹³⁷**Cs run** Background subtraction

Monte Carlo spectrum fit Convolution model

The model is the convolution of the spectrum with a gaussian response function :

$$\int_{-\infty}^{+\infty} f(E) gaus(q - QY \times E, \sigma_q) dE$$

Where
$$\sigma_q = F \sqrt{q}$$

• There are 2 parameters : QY and F

Monte Carlo spectrum fit **QY and F measurement**

- Minuit minimisation of the data and the spectrum convoluted with the response.
- Fit range starts at 70000 ADC to avoid trigger inefficiency.

2.0 events / s / 1000.0 ADC 12 12 0.5

0.0

2.5

$F = 47.2 \pm 0.7$

Effective Light Yield extraction Gain and LY calculation

• From the charge yield QY, we want to extract the gain and the LY :

$$\sigma_q = F \sqrt{q} \Leftrightarrow \frac{\sigma_q}{q} = \frac{F}{\sqrt{q}}$$

• We require that the charge distribution is proportional to the PE distribution :

$$gain = \frac{q}{N_{pe}} = \frac{QY}{LY}$$

$$\frac{QY}{F^2}$$

Effective Light Yield extraction From the spectrum

- From the fit parameters, the gain is extracted as : $gain = F^2$

$$\begin{cases} QY = 200.4 \pm 0.4 \,ADC/ke^{2} \\ F = 47.2 \pm 0.7 \end{cases}$$

We do not have access to the true LY but what we measure is the actual sensitivity of the detector.

The equivalent Light Yield (LY) in the case of a poissonian distribution is given by : $LY = \frac{QY}{F^2}$

$\Rightarrow \begin{cases} gain = 2224 \pm 66 \, ADC/pe \\ LY = 0.090 \pm 0.003 \, pe/keV \end{cases}$

Effective Light Yield extraction From the α peaks

Peak	Q-Value (keV)	Mean (ADC)	Mean uncertainty (ADC)	Standard Deviation (ADC)	Standard Deviation uncertainty (ADC)	Liç (r
²²² Rn	5590,3	8,276E+05	4,36E+03	3,45E+04	3,13E+03	
²¹⁸ Po	6114,7	9,121E+05	5,19E+03	3,13E+04	2,80E+03	
²¹⁴ Po	7833,5	1,164E+06	6,91E+03	5,31E+04	9,29E+03	

The LY found with the Cesium run was : 0.090 ± 0.003 pe/keV

 $\frac{q^2}{\sigma^2 E}$

Conclusion

- The effective LY is very low at the moment
- The values from α peaks are compatible with the Cs spectrum
- The gain could be measure through the dark noise finger plot however :
 - There is too much noise at low VoV
 - α peaks saturate at higher VoV
- The LY and the dark noise could be increased by adding more SiPM

Backup Slides

109**Cd run** Spectra comparison with live-time normalisation

- Background run n°103
- ¹⁰⁹Cd run n°105
- As expected, no excess in ¹⁰⁹Cd with respect to background.

Light Yield Calculation for a Gain measurement

- For each peak, we fit σ_q and q knowing E
- We define F the deviation from a Poisson distribution such that $\sigma_q = F_{\sqrt{q}}$
- We assume that the ADC count is proportional to an equivalent true Poisson distribution : $\frac{\sigma_q}{q} = \frac{\sigma_{pe}}{N_{pe}} = \frac{1}{\sqrt{N_{pe}}}$. This gives : F $\sqrt{q} \sqrt{N_{pe}}$

$$\Rightarrow F = \sqrt{\frac{q}{N_{pe}}} = \sqrt{g}$$

Light Yield Calculation for a **Effective LY computation**

•
$$LY = \frac{N_{pe}}{E}$$
 and since $N_{pe} = \frac{q}{g} = \frac{q}{F}$
 $LY = -\frac{1}{R}$

Uncertainty propagation gives :

 $\frac{q}{r^2}$, we have : $\frac{q}{F^2 E} = \frac{q^2}{\sigma_a^2 E}$

 $\delta LY = \frac{2q}{\sigma_q^2 E} \sqrt{\delta q^2 + \left(\frac{q}{\sigma_q}\delta\sigma_q\right)}$

Channel relative calibration Stability over runs

