Hadron Physics: the KLOE legacy S. Giovannella (INFN LNF)

Paolo Franzini and Juliet Lee-Franzini Memorial Symposium 19 April 2022 – Laboratori Nazionali di Frascati

90's life @ LNF

1992: The DAΦNE Physics Handbook

CHAPTER 7 - RADIATIVE &-DECAYS

513

STUDYING the f_0 and η' at DA Φ NE

JULIET LEE-FRANZINI

Laboratori Nazionali di Frascati dell'INFN

SUNY at Stony Brook, Stony Brook, New York 11794

Won Kim

SUNY at Stony Brook, Stony Brook, New York 11794

PAULA J. FRANZINI

Laboratoire de Physique Théorique ENSLAPP,*• B.P. 110, F-74941 Annecy-Le-Vieux Cedex, France

Abstract

At the end of 1995, the Frascati ϕ -factory will begin delivering of the order of 500 ϕ -mesons/sec. This provides a unique opportunity to study the $f_0(975)$ in ϕ radiative decays, even for branching ratios which in some estimates could be as low as 1×10^{-6} .

Hadron Physics @ KLOE

Key ingredients for precision Hadron Physics @ KLOE:

- Lots of light mesons! ~ 4 × 10⁷ η/fb⁻¹
- X η and η' produced from φ radiative decay: tagged by the monochromatic recoil photon
- X State-of-the-art detector:
 - × large acceptance
 - k high precision momentum tracking
 - × excellent calorimeter timing
- Kinematic fit constraint exploited to improve resolutions

My first steps in Hadron Physics

Kloe Memo 98-145

April 98

Detection of $f_0(975), a_0(980)$ with $5 \times 10^8 \phi$ decays

^aA. Farilla, ^bS. Giovannella and ^{b,c}J. Lee-Franzini

^aINFN - Sezione di Bari, 70126 Bari, Italy ^bINFN - Laboratori Nazionali di Frascati, 00044 Frascati, Italy ^cPhysics Department, SUNY at Stony Brook, New York 11794, USA

INTRODUCTION

The decays $\phi \to f_0 \gamma$, $\phi \to a_0 \gamma$ have been studied with a full MonteCarlo simulation of the KLOE detector [1] [2], using the complete event reconstruction package [3], taking into account all possible sources of background, with the aim of evaluating the detector efficiency and the accuracy that can be reached on the BR.

For the decay $\phi \to f_0 \gamma$ this study has been done both in the charged pion channel (BR($f_0 \to \pi^+\pi^-$)~ 52%) and in the neutral pion channel (BR($f_0 \to \pi^0\pi^0$)~ 26%). We especially emphasize the existence of an interesting interference pattern between $f_0\gamma \to \pi^+\pi^-\gamma$ and $e^+e^- \to \pi^+\pi^-\gamma$: the sign on the interference in unknown, it depends on the sign of the $\phi f_0\gamma$ coupling and therefore on the unknown nature of the f_0 [4]. For the decay $\phi \to a_0\gamma$ this study has been done in the neutral channel (BR($a_0 \to \eta\pi^0 \to \gamma\gamma\gamma\gamma$)~ 39%) [5].

The values 4.7×10^{-4} and 1.3×10^{-4} , recently measured by the SND collaboration [6], have been assumed respectively for the BR($\phi \rightarrow f_0 \gamma$) and BR ($\phi \rightarrow a_0 \gamma$). With these BR's, the following number of events are expected for $5 \times 10^8 \phi$ decays:

61000 events for $\phi \rightarrow f_0 \gamma \rightarrow \pi^0 \pi^0 \gamma$

160000 events for $\phi \to f_0 \gamma \to \pi^+ \pi^- \gamma$ (positive interference)

41000 events for $\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$ (negative interference)

25500 events for $\phi \rightarrow a_0 \gamma \rightarrow \eta \pi^0 \gamma \rightarrow \gamma \gamma \gamma \gamma \gamma$

In order to see how well the f_0 , a_0 signal can be isolated against other decay channels, the selection criteria for f_0 , a_0 have been applied also to the following data sets from the "10⁸ Events Project":

First KLOE data presented @ HADRON99

"Detection of Scalar and Pseudoscalar Mesons at DAONE with KLOE"

8th International Conference on Hadron Spectroscopy – HADRON99 – Beijing, 24–28 August 1999

HADRON99: φ→ηγ→γγγ events

HADRON99: $\phi \rightarrow \eta \gamma \rightarrow \gamma \gamma \gamma$ events

HADRON99: φ→ηγ→γγγ events

HADRON99: $\phi \rightarrow f_0 \gamma \rightarrow \pi^0 \pi^0 \gamma$ candidate

A dozen of f₀ candidates already available

2002: First papers on hadron physics

Papers based on KLOE data (I)

Channel	Торіс	Statistics	Reference
φ ➤ ηπ ⁰ γ	a ₀ (980)	16 pb ⁻¹	PLB 536 (2002) 209
$\phi \rightarrow \pi^0 \pi^0 \gamma$	f ₀ (980)	16 pb ⁻¹	PLB 537 (2002) 21
$\Gamma(\phi \rightarrow \eta' \gamma) / \Gamma(\phi \rightarrow \eta \gamma)$	BR, η-η' mixing	16 pb ⁻¹	PLB 541 (2002) 45
$\phi \rightarrow \pi^+ \pi^- \pi^0$	DP, ρ params	16 pb ⁻¹	PLB 561 (2003) 55
η → γγγ	UL, C violation	410 pb ⁻¹	PLB 591 (2004) 49
$\eta \rightarrow \pi^+\pi^-$	UL, P/CP violation	350 pb ⁻¹	PLB 606 (2005) 276
$\phi \rightarrow \pi^+ \pi^- \gamma$	f ₀ (980)	350 pb ⁻¹	PLB 634 (2006) 148
$e^+e^- ightarrow \pi^0\pi^0\gamma$	$f_0(980)$, $f_0(500)$	450 pb ⁻¹	EPJC 49 (2007) 473
φ → ηπ ⁰ γ	a ₀ (980)	400 pb ⁻¹	PLB 681 (2009) 5
φ≁ ηγ	η mass	410 pb ⁻¹	JHEP 12 (2007) 073
$\Gamma(\phi \rightarrow \eta' \gamma) / \Gamma(\phi \rightarrow \eta \gamma)$	η-η' mixing, gluonium	427 pb ⁻¹	PLB 648 (2007) 267
Global fit	η-η' mixing, gluonium		JHEP 07 (2009) 105
$\eta \rightarrow \pi^+\pi^-\pi^0$	DP params, C-inv.	450 pb ⁻¹	JHEP 05 (2008) 006
$\eta \rightarrow \pi^0 \pi^0 \pi^0$	Slope parameter (α)	420 pb ⁻¹	PLB 694 (2010) 16

Papers based on KLOE data (II)

Channel	Торіс	Statistics	Reference
$\phi \neq K_S K_S \gamma$	UL, a ₀ (980), f ₀ (980)	2.2 fb ⁻¹	PLB 679 (2009) 10
$\eta \rightarrow \pi^+\pi^-e^+e^-$	BR, CP-viol asimm.	1.7 fb ⁻¹	PLB 675 (2009) 283
$\eta ightarrow e^+e^-e^+e^-$	First observation, BR	1.7 fb ⁻¹	PLB 702 (2011) 324
$\eta \rightarrow \pi^+\pi^-\gamma$	BR, decay dynamic	558 pb ⁻¹	PLB 718 (2013) 910
$\eta \rightarrow \pi^+ \pi^- \pi^0$	DP params, C-inv.	1.6 fb ⁻¹	JHEP 05 (2016) 019
$\phi \Rightarrow \eta e^+ e^-$	BR, TFF	1.7 fb ⁻¹	PLB 742 (2015) 1
$\phi \rightarrow \pi^0 e^+ e^-$	BR, TFF	1.7 fb ⁻¹	PLB 757 (2016) 362
$\eta \rightarrow \pi^+\pi^-$	UL, P/CP violation	1.6 fb ⁻¹	JHEP 10 (2020) 47
$\Gamma(\phi \nleftrightarrow \ell^+ \ell^-)$	$\Gamma_{\ell\ell}$, lepton univ.	17 pb $^{-1}$, $3 \ \sqrt{s}$	PLB 608 (2005) 199
$e^+e^- \rightarrow \omega \pi^0$	ω BRs, BR(φ≁ωπ⁰)	600 pb ⁻¹ 1000-1030 MeV	PLB 669 (2008) 223
γγ → η	$\Gamma(\eta \nleftrightarrow \gamma \gamma), \sigma(e^+e^- \bigstar \eta \gamma)$	240 pb ⁻¹ , 1 GeV	JHEP 01 (2013) 119

× 25 papers in 20 years

- × Properties of light scalar, pseudoscalar and vector mesons deeply investigated
- Several state-of-the-art measurements

Scalar mesons @ KLOE

- **X** BR($\phi \rightarrow f_0(980)\gamma$ / $a_0(980)\gamma$) and mass spectra sensitive to scalar structure
- X Mass/Dalitz distributions fitted with Kaon Loop model, interference with irr. bckg

Light quark masses: $\eta \rightarrow \pi^+\pi^-\pi^0$

- Isospin violating decay, sensitive to light quark mass difference
- A precision measurement of the Dalitz plot density allows an accurate determination of the light quark mass ratio through dispersive techniques
- **×** Precise KLOE analysis of $\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot density, based on **4.7** × **10**⁶ η events

[Colangelo, Lanz, Leutwyler, Passemar, EPJC 78 (2018) 947]

X Dispersive analyses of $\eta \rightarrow 3\pi$ based on fits to unfolded KLOE data

2006: End of KLOE data taking

Low energy dark forces

Hidden gauge sector weakly coupled with SM through a mixing mechanism:

- Λ Coupling constant of electric charge to U: ε ≤ 10^{-3}
- ✤ Observable at low energy colliders
- $\boldsymbol{\checkmark}$ Possible source of a_{μ} discrepancy

First KLOE search: $\phi \rightarrow \eta U(e^+e^-)$

U boson searches in continuum events

Recent status of U boson searches

Annu. Rev. Nucl. Part. Sci. 2021. 71

KLOE data are still alive

KLOE and KLOE-2 data still providing competitive results in the hadron physics sector:

- **×** Largest existing η meson sample from $3 \times 10^8 \phi \rightarrow \eta \gamma$ events produced
- **×** Searches for new physics: leptophobic dark force mediator, ALPs
- **×** 4 × 10⁶ ω mesons produced through $e^+e^- → ω \gamma_{ISR}$
- × γγ physics using High Energy Taggers to detect scattered electrons and positrons

KLOE-2 analyses in progress in all of these sectors

A long-standing debate: $\eta \rightarrow \pi^0 \gamma \gamma$

- ✗ ChPT "golden mode": p² null, p⁴ suppressed, p⁶ dominates
- X Measured value decreased by 3 order of magnitude since the '60s
- **KLOE** prel. 2006, 450 pb⁻¹: 70 signal events, 3σ significance

New $\eta \rightarrow \pi^0 \gamma \gamma$ KLOE measurement

- New analysis using 4x larger data sample, 1.7 fb⁻¹
- Kinematic fit with signal and background hypotheses
- **X** Main background $\eta \rightarrow \pi^0 \pi^0 \pi^0$ suppressed using MVA-BDT method

Ar Signal, η → 3π⁰ + other bckg fitted to data
 Ar BR normalization to η → 3π⁰ channel

✔ Separate fit to each M_{γγ} slice
 ✔ BR interpolating dΓ/dM

BR($\eta \rightarrow \pi^0 \gamma \gamma$) = (1.2 ± 0.13_{stat}) × 10⁻⁴

BR($\eta \rightarrow \pi^0 \gamma \gamma$) = (1.3 ± 0.13_{stat}) × 10⁻⁴

In agreement (1.2 σ) with KLOE 2006 preliminary measurement

γγ physics @ KLOE-2

$$\sigma_{\gamma\gamma \to R}(q_1, q_2) \propto \Gamma_{R \to \gamma\gamma} \frac{8\pi^2}{M_R} \delta((q_1 + q_2)^2 - M_R^2) F(q_1^2, q_2^2) \Big|^2$$

 Transition form factors crucial for hadronic light-by-light contributions to muon g-2

× $\Gamma_{\gamma\gamma}$ should be known precisely

Feasibility studies already in the 90s: DA Φ NE Physics Handbooks

0 - 1	Two Photon Processes
10.1	What we Learn by Measuring $\gamma \rightarrow \pi \pi$ at DA ΦNE
	M.R. Pennington
10.2	Low-Energy Photon-Photon Collisions in Chiral Perturbation Theory
	S. Bellucci, J. Gasser and M.E. Sainio
10.3	Azimuthal Correlations in $\gamma\gamma \rightarrow \pi^{0}\pi^{0}$ at DA Φ NE
	S. Bellucci, A. Courau and S. Ong
10.4	Theoretical Predictions for Pion Polarizabilities
	M.R. Pennington and J. Portolés
10.5	The Kinematics of the Two-Photon Processes at DAΦNE
	A. Courau
10.6	Measurement of Two Photon Interactions with the KLOE Small Angle Tagging System F. Anulli , R. Baldini–Ferroli, M. Bassetti, S. Bellucci, A. Courau, I. Cohen, A. Moalem, G. Pancheri, M. Preger, L. Razdolskaja, Sergio and A. Zallo607
10.7	Small Angle Radiative Bhabha Scattering in the No-Recoil Approximation G. Pancheri
10.8	QED Radiative Corrections and Radiative Bhabha Scattering at DAONE
	M. Greco, G. Montagna, O. Nicrosini and F. Piccinini
	Tagging system for small
	angle scattered e^+/e^-

physics @ KLOE-2: $\gamma\gamma \rightarrow \pi^0$

- HET data synchronized with DA Φ NE (each 325 ns) and KLOE trigger ×
- HET acquisition window: 2.5 DA Φ NE revolutions, enabled by KLOE trigger ×
- Single arm selection: HET signal within ± 40 ns w.r.t. KLOE $\gamma\gamma$ event ×

Two data samples used:

- modelling (shape & number)
- signal + accidentals
- Maximum Likelihood fit to A and A+
 - \rightarrow constraints on accidentals in A+
 - → background pdf from A sample

Signal pdf : EKHARA MC, control samples and BDSIM transport of the leptons through the beamline

Events / (0.00882353) 9000 nsig = 2430 ± 280 8000 7000 6000 Data: A +sample nsig = 2430 + 280 5000 Accidental pdf Accidental data Zoom of signal fit Signal pdf

HET electrons – 2 fb⁻¹

$$3000 = Fit sum
2000 = - - - - - 0.98 - - 0.96 - - 0.94 - - 0.92 - - 0.9 - 0.88 - 0.86 - 0$$

Signal-enriching cut applied: $|\Delta T_{\gamma\gamma} - \Delta R_{\gamma\gamma} / c| < 0.5 \text{ ns}$ Cut efficiency 80% from control sample studies

0.86

Light hadron physics perspectives

- Light mesons still offer a unique opportunity:
 - X Test of chiral dynamics at low energy
 - Fundamental parameters of the Standard Model (e.g. light quark mass)
 - Investigation of exotic particles
 - Study of fundamental symmetries
 - Search for physics beyond Standard Model
- KLOE have provided (and it is still providing) fundamental results on light meson properties, decay dynamics and transition form factor, together with limits on new physics... still the largest η dataset by far
- **×** Hadron Physics investigation is continuing with current experiments:
 - \checkmark @ e^+e^- and hadron colliders: BES-III, Belle-II, LHCb...
 - @ scattering experiments: GlueX, COMPASS
- More to come with JEF and REDTOP experiments

Paolo & Juliet legacy

- Deep interest and passion for physics, and for all the steps of the experiment, from technical aspects to physics outcome
 - In particular Paolo, in addition to his ample physics knowledge, enlightened us with his competences in detectors, electronics, statistics
- X The importance of creating a stimulating, exciting and familiar working environment to create a good synergy inside the collaboration
- Push young collaborators to stand out, contribute and take leading responsibilities, thus shaping a generation of brilliant and enthusiast researchers
- X The rigorous attention of the English, avoiding slang and jargon

It was a privilege to take part of the amazing adventure of KLOE. Our scientific community and the lab experienced a period of great excellence!

Thank you!

