

SiPM: irradiation and annealing campaign

Giornata nazionale EIC_NET 2022 Luigi Rignanese rignanes@bo.infn.it

Outline

- Introduction
- Characterization setup
- Irradiation and annealing campaign
- Results

Introduction

SiPMs are a valuable option for the **Dual Rich** optical readout:

- Cheap
- Low voltage operation
- Excellent time resolution
- Single photon detection
- Insensitive to magnetic field
- High spatial resolution

But:

- Large Dark Count Rate
- Prone to radiation damage.

Introduction by operating at low temperatures (~-30°C)

SiPMs are a valuable or readout:

- Cheap
- Low voltage operati
- Excellent time resolu
- Insensitive to magn
- High spatial resoluti But:
- Large Dark Count Rate
- Prone to radiation damage.

Radiation damage by Non-ionizing Energy Loss (**NIEL**) leads to **displacement** damages and build up of **crystal defects** that results in:

- Increased **DCR**
- Increased **AP**
- Single photon detec
 Change in charge collection

Setup

Memmert climatic chamber to mimic the operative conditions: -30°C

FPGA board Pulser Multiplexer Source meter Power supplies PC

3 setups for a full characterization of the detectors

3 setups for a full characterization of the detectors

IV setup: Dark Current - V_{BD}

Keithley 2450 SMU (10 fA resolution) Keithley 7702 40 ch Mux Up to 32 SiPMs (2 boards) automated measurement

IV setup: Dark Current - V_{BD}

Keithley 2450 SMU (10 fA resolution) Keithley 7702 40 ch Mux Up to 32 SiPMs (2 boards) automated measurement

DCR

Full dressed readout:

- ALCOR ASIC (To)
- Bias distribution (Fe)
- FPGA (Bo)

DCR

Full dressed readout:

- ALCOR ASIC (To)
- Bias distribution (Fe)
- FPGA (Bo)

delta wrt. automatically-computed

minimal threshold

delta threshold

(Hz) 10⁷ 10⁶ S13360-3050VS electronic noise set threshold 10⁵ 10⁴ 10³ 10² = ≥ 1-pe plateau 10 --- over voltage = 2.7 V ≥ 2-pe plateau over voltage = 4.7 V 20 40 60

LED optical bench – PDE

Full ALCOR readout.

Linear stage move the sensor **matrix** in front of the **LED**. **LED** driven by a high precision **pulser**. The same pulse is sent to the **FPGA** to perform **coincidences**.

At the beginning of each line, a **reference sensor** is measured.

The sensors

	board	sensor	uCell (µm)	V _{bd} (V)	PDE (%)	DCR (kHz/mm²)	window	notes	
	HAMA1	S13360 3050VS	50	53	40	55	silicone	legacy model Calvi et. al	РНОТ
		S13360 3025VS	25	53	25	44	silicone	legacy model smaller SPAD	
	HAMA2	S14160 3050HS	50	38	50		silicone	newer model lower V _{bd}	UR BUS
		S14160 3015PS	15	38	32	78	silicone	smaller SPADs radiation hardness	
	SENSL	MICROFJ 30035	35	24.5	38	50	glass	different producer and lower V _{bd}	ON
		MICROFJ 30020	20	24.5	30	50	glass	the smaller SPAD version	ON Semiconductor®
	BCOM	AFBR S4N33C013	30	27	43	111	glass	commercially available FBK-NUVHD	BROADCOM

Active area

X x Y = 3.0 x 3.1 mm

3.10 mm

October 5, 2020

- Fast recovery time reduced cell occupancy Tau recharge < 15 ns
- Primary DCR @ +24°C ~ 40 kHz/mm²

FBK - Confidential

Ø

The sensors

	board	sensor	uCell (µm)	V _{bd} (V)	PDE (%)	DCR (kHz/mm²)	window	notes	
	HAMA1	S13360 3050VS	50	53	40	55	silicone	legacy model Calvi et. al	РНОТ
		S13360 3025VS	25	53	25	44	silicone	legacy model smaller SPAD	
	HAMA2	S14160 3050HS	50	38	50		silicone	newer model lower V _{bd}	UR BUS
		S14160 3015PS	15	38	32	78	silicone	smaller SPADs radiation hardness	
	SENSL	MICROFJ 30035	35	24.5	38	50	glass	different producer and lower V _{bd}	ON
		MICROFJ 30020	20	24.5	30	50	glass	the smaller SPAD version	ON Semiconductor
	BCOM	AFBR S4N33C013	30	27	43	111	glass	commercially available FBK-NUVHD	BROADCOM

The sensors

=2

NUV-HD-CHK

Measuring plan

	DCR		ľ	V	LED		
	CHIP2	CHIP3	MUX1	MUX2	CHIP0	CHIP1	
1	FBKa	FBKb	HAMA1	HAMA2	not running		
2	HAMA1	HAMA2	SENSL	HAMA1L	not running		
3	SENSL	HAMA1L	FBKa	FBKb	not running		
4	not running		not ru	inning	HAMA1	reference	

Operators needed at the **start** of each run to place the correct **devices** and **start** the acquisition.

After that, the characterization is fully **automated**.

Reports are sent via **email** to the operator's group to check the **status** of the run and give a **quick-look** of the measures

17

Irradiation and annealing campaigns

2021 campaign

Trento Institute for Fundamental Physics and Applications

HAMA1 HAMA2 FBK NUV-HD-CHK FBK NUV-HD-RH SENSL BCOM

19

Irradiation and annealing campaigns

2022

4 steps irradiation scheme with increasing cumulative fluence:

- 1. 1x10⁹ <u>4/6/22</u>
- **2. 2x10⁹** 16/7/22
- **3. 3x10**⁹ August/22
- 4. 4x10⁹ December/22
- 2 kind of annealing:
- Oven annealing 150 hours @150°C
- Direct current annealing

Characterization

20

2022 campaign

Trento Institute for Fundamental Physics and Applications

HAMA1 HAMA2 FBK NUV-HD-CHK FBK NUV-HD-RH HAMA1L

Direct current annealing

HAMA1L board equipped with **Hamamatsu S13360** irradiated for a total of **10⁹ n**_{eq}

2 kind of direct current annealing:

- Online for the 3050 (50um spad)
- Offline for the 3025 (25um spad)

Online: irradiation divided in **5** cycles interleaved by direct current annealing @**175°C** for 30 min (**2.5h** total)

Offline: two phase annealing in Bologna. @175°C for 30 min and 175°C for 2 h (**2.5h** total)

UPDATE on Direct current annealing

HAMA1L board equipped with **HP** irradiated for a total of **10⁹**

2 kind of direct current annealir

- Online for the 3050 (50um sp
- Offline for the 3025 (25um sp

for 30 min and 175°C for 2 h (**2.5h** total)

Temperature monitored via a FLIR thermo-camera calibrated with Luca Barion

2% uncertainty

Results

SiPMs remain functional even at 10¹¹ NIEL. No relevant changes in VBD after irradiation and/or annealing

new

The dark current increases linearly with the level of irradiation

200 hours @ 125°C oven annealing reduces the dark current by a factor ≈ ≈10

200 hours @ 125°C oven annealing reduces the dark current by a factor ≈ ≈10.

200 hours @ 150°C oven annealing reduces the dark current by a factor ≈100.

200 hours @ 150°C oven annealing reduces the dark current by a factor ≈100.

Results: Dark current

Common behavior along all the samples

Results: Dark Current ratio to new

Results: Dark Current ratio to new

Hamamatsu S14160 series show a better recovery with the annealing

Results: DCR

DCR is a better figure of merit respect to Dark Current

Results: DCR

Hamamatsu S13360-3050 shows less DCR at any irradiation/annealing level

Results: DCR vs. Dark Current

Correlation between the two measurement. The **slope** represents the **GAIN** of **SiPMs** that remains **constant** at all the different **irradiation/annealing levels**

Results: Direct Current Annealing (Dark current)

Dark current decreases in both the methods but without reaching the oven but in 1/10 of the annealing time.

Results: Direct Current Annealing (Current reduction)

The Dark Current reduction.

Results: Direct Current Annealing (DCR)

Results: Direct Current Annealing 3025 offline

In the first 30 min of annealing, a factor \approx 7 of dark current is recovered. In the next 2 hours, only a factor \approx 2 is recovered but the homogeneity is far better.

It seems that there is a **lost** in **efficiency** in the light collection, but the **ratio respect** the **reference** sensor shows that the efficiency is maintained.

With the irradiation and annealing up to 10¹⁰ n_{eq} there are **no damage** to the **optical window** or in the **photon-ions conversion**.

At 10¹¹ n_{eq} and higher OV we see some problems that are compatible with a saturation in ALCOR

@4 MHz efficiency loss.

SiPMs – Alcor FE Coupling issues

Conclusion

We developed an automated setup for SiPMs characterization, and the first results are shown.

We are assessing commercial and prototypes SiPMs performance after irradiation and annealing.

We are working on a standard (oven) and alternative (direct current) annealing protocols.

