
A. Mastroserio, S. Fazio

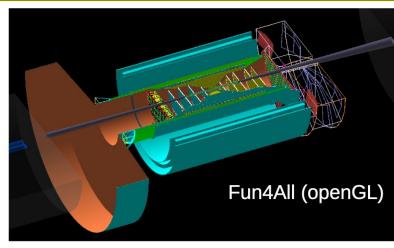
Montecarlo Simulations - Ongoing Activities

- Bi-weekly meetings on Monday mornings
- EIC_NET Simulation activities:
 - Tracking perfomance studies
 - dRICH
 - Physics simulations
- Our community (ex ATHENA) gained experience with fundall and DD4hep, now waiting for further indications on how to proceed
- EIC SWG: Dicussions ongoing to define a common strategy /tools for a common software
 - Discussion decision schedule
 - End of June: Geometry, Data Format, Reconstruction framework, container
 - <u>EIC Detector 1 Software Decision</u> (Geometry)
 - End of July : Calibration, Data preservation

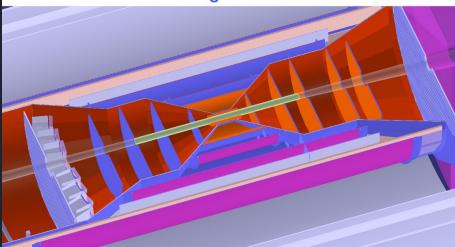
Geometry: ECCE geometry

MC studies for Detector-1 start from the ECCE geometry

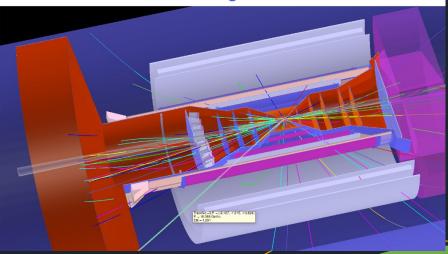
Tracking Performance studies


- Studies on Detector-1 geometry
 - Vertex detector performance optimization
 - Fast Simulation tools
 - Validation
 - Detector geometry modification (e.g.: inner barrel radii)

Performances compared with the Physics Working Group (PWG) requirement

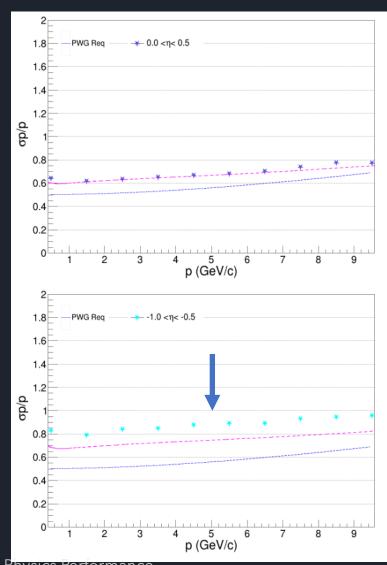

Shyam Kumar

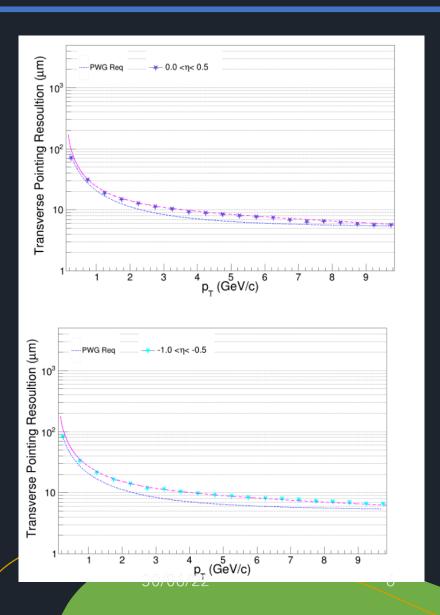
Ecce Geometry


Geometry used for the simulation in Fun4All

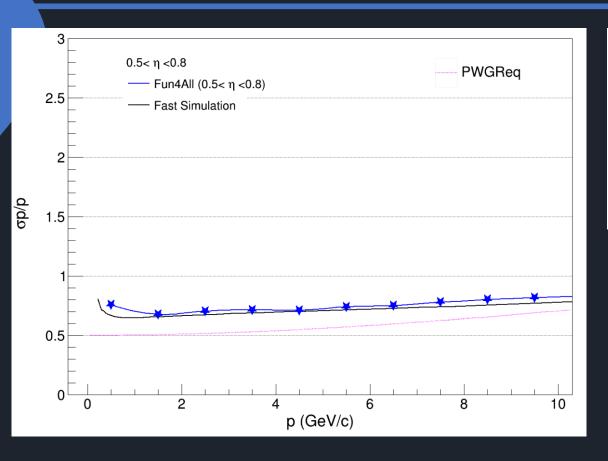
EveManager

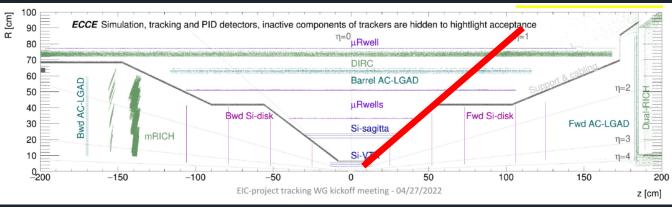
EveManager with tracks


Shyam Kumar


Fast Simulation tool

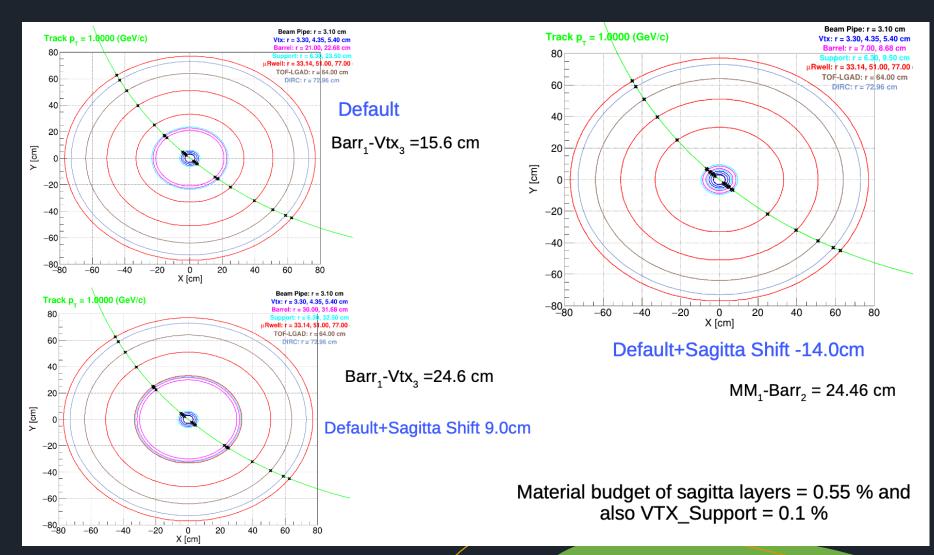
Barrel layers detector


Internal parameters tuned to the ECCE vertex detectors and B field


Shyam Kumar

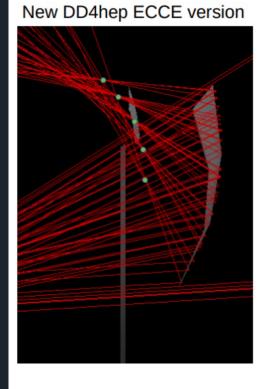
Fast Simulation Tool

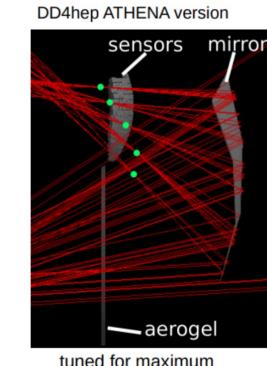
FS tool well under control


Fast Simulation tool: optimization studies

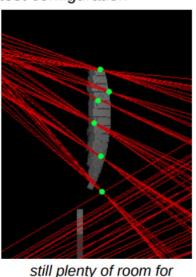
Shyam Kumar

Several results on


- moving internal layers
- changing their material budget
- Changing detector resolution


-> Shyam's talk at the tracking working group meeting on next week

dRICH simulations


- Work ongoing on pattern recognition
- Inverse Ray Tracing approach
- Code developed within dd4hep framework
- Issues occurred during this transition period on the general software development
 - Work ongoing to adapt the algorithm to the new data model

tuned for maximum polar acceptance

DD4hep ATHENA dual mirror test configuration

still plenty of room fo improvement!!

Chandradoy Chatterjee

See Chandra's talk

Physics Simulations (> pubblication)

- Salvatore one of the authors of the EpIC Monte Carlo event generator for exclusive processes sensitive to generalised parton distributions
 - https://inspirehep.net/literat ure/2077191

Slides from Kemal Tezghin

EpIC

EpIC: novel Monte Carlo generator for exclusive processes

E. C. Aschenaueral, V. Batozskayable, S. Faziocia, K. Gatesdid, H. Moutarde [65], D. Sokhan [65]4, H. Spiesberger [66], P. Sznajder [62],

- Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
- ² National Centre for Nuclear Research (NCBJ), Pasteura 7, 02-093 Warsaw, Poland

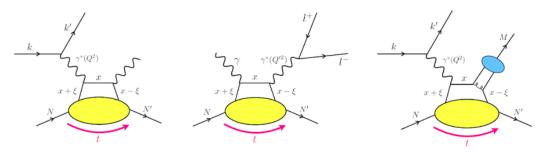
³ University of Calabria & INFN-Cosenza, Italy

- ⁴ University of Glasgow, Glasgow G12 8QQ, United Kingdom ⁵ IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- ⁶ PRISMA+ Cluster of Excellence, Institut f
 ür Physik, Johannes Gutenberg-Universit
 ät, D-55099 Mainz, Germany

Received: date / Accepted: date

Abstract We present the EpIC Monte Carlo event generator for exclusive processes sensitive to gener-fer to the nucleon, i.e. in the forward limit, certain alised parton distributions. EpIC utilises the PAR-TONS framework, which provides a flexible software first Mellin moments of GPDs are related to elastic form architecture and a variety of modelling options for the factors. In this regard, GPDs may be viewed as a unipartonic description of the nucleon. The generator offers a comprehensive set of features, including multichannel capabilities and radiative corrections. It may be used both in analyses of experimental data, as well as in impact studies, especially for future electron-ion colliders.

like separations. In case there is no momentum trans-GPDs become equivalent to PDFs. Additionally, the scattering processes and one-dimensional parton distribution functions studied via (semi-) inclusive scattering processes. Another key aspect of GPDs is their relation to nucleon tomography. The Fourier transform of GPDs are related to the impact parameter space distri-


E.C. Aschenauer et al., arXiv: 2205.01762 (2022)

Physics Simulations

EpIC

- EpIC: an event generator for exclusive reactions
- EpIC uses the PARTONS framework: takes advantage of
 - multiple GPD models that already exist
 - flexibility for adding new models
- Multiple channels: DVCS, TCS, DVMP (pseudoscalar mesons)

- Written in C++
- XML interface for automated tasks
- Open-source

- Input file: model, model parameters, number of events, kinematic limits, beam and target type, beam helicity, target polarization, beam and target energy, mFOAM parameters
- Output file: 4-vectors of all particles

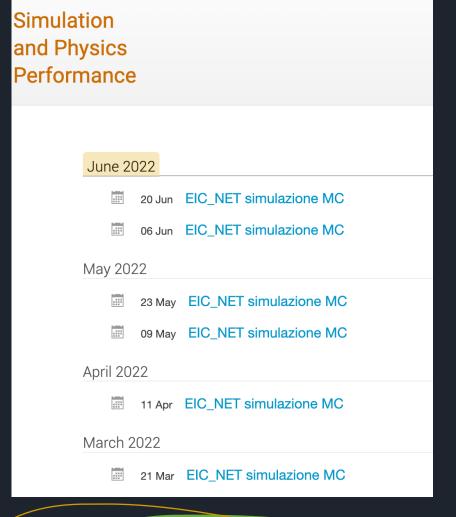
Flexible Architecture that utilises a modular programming paradigm

Open Tasks: tracking & PID simulations

- Tracking & Vertexing:
 - Check the tracking performances (σ_p/p and pointing resolution, η dependance) in several scenarios:
 - Fast simulation in more than one detector configurations
 - Full simulation in the simulated detector geometry(ies)
 - Check the same performances with two (or more) B fields
 - Check the reconstruction performance of particles as physics benchmarks (e.g.: D0)
 - Both local and MC simulations (generator)
 - Same checks with different fields
 - Contact persons : D. Elia, A. Mastroserio
- PID : dRICH, development of pattern recognition methods, studies in different configurations and B field
 - Contact person : C. Chatterjee

Open Tasks: Physics simulations

- DVCS: quantify the effect of the ECAL energy resolution on the reconstruction of kinematics using a full simulation of the detector and realistic PID.
- Exclusive Processes: investigate the possibility of mitigating the systematic effects due to radiative corrections by measuring initial state radiation photons at zero degree with the Lumi detector.
 - contact person: S. Fazio
- Diffractive PDFs: perform a first EIC impact study. CFNS-Stony Brook Workshop on PDFs at EIC (M. Ruspa organizer) https://indico.bnl.gov/event/14009/
 - contact person (M. Ruspa)
- HERA4EIC: several analyses at HERA can help tuning EIC Physics Studies and train a younger generation of researchers on data analysis of e+p collisions in collider mode.


See also CNFS workshop at Stony Brook: https://indico.bnl.gov/event/9370/

- contact persons: M. Ruspa, M. Capua, S. Fazio

Summary

 Work ongoing despite the transition period of the official software framework on several items

- People interested are welcome to join our meeting EIC_NET: Simulation and physics performance meeting
 - https://agenda.infn.it/category/1559/
- Several topics from detector simulations to physics simulations are available for further studies

Electron Ion Collider School

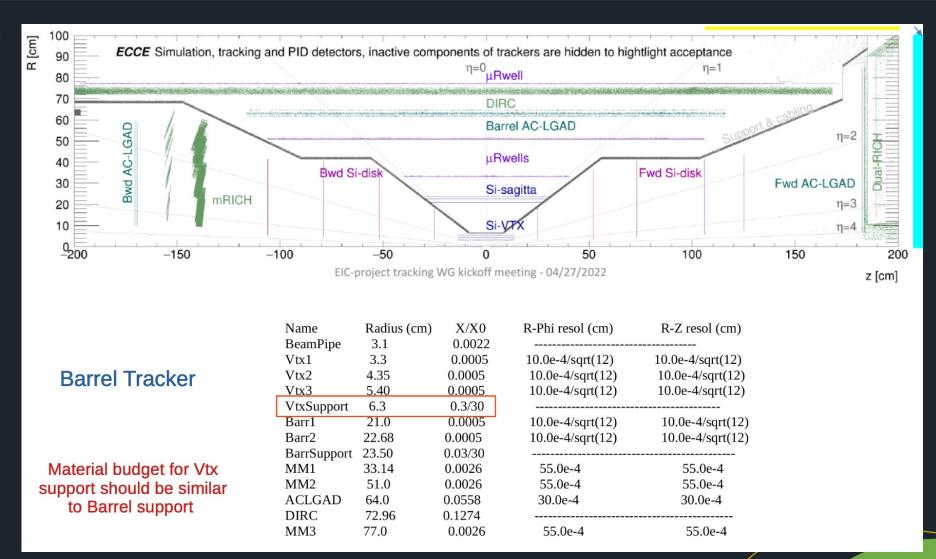
EIC School proposal

School dedicated to Electron Ion Collider [physics and detectors]

- Who : students both from master thesis / PhD (I year)
- When: 2023 April/May/summer, -> 3.5 days
- Where: Bertinoro/Maratea/Vieste/....
- What: lessons from theory, detectors, hands on sessions (MC simulations)

EIC School proposal

Preliminary ideas on lectures


- Deep Inelastic Scattering history (from SLAC-MIT to HERA)
- Detectors: detectors and technologie chosen for DIS measurements at HERA (ZEUS, H1, HERMES)
- Nucleon tomography: longitudinal structure function, TMD e GPD
- JLAB e COMPASS: overview of physics results
- Diffractive physics
- EIC Physics Program
 - Spin physics
 - Mass of the nucleon
 - Hadron spectroscopy

•

->Availability of Abhay Deshpande

Discussion

Tracker geometry details

