

Transversity 2022 highlights and the Physics of SIDIS

Marco Radici

Pavia

Transversity 2022 in numbers

65 registered49 in person, 16 remote

57 talks, 8 from remote16 short talks

+ Piet Mulders' fest for his 70th birthday

Transversity 2022 outline

Mostly focus on

Semi-Inclusive Deep-Inelastic Scattering (SIDIS)

with various final states "**h**" : light- / heavy-quark hadrons jets, hadron-in-jet, etc..

Factorization th.'s available (not everywhere!) for $P_{hT}^2/z^2 \ll Q^2$

From the point of view of a theoretician...

From the point of view of a theoretician...

The TMD "zoo" at leading twist

The TMD "zoo" at leading twist

Transversity

		Quark polarization					
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)			
Jucleon Polarization	U	$f_1 = ullet$	×	$h_1^{\perp} = \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} - \textcircled{\bullet}$			
	L	×	$g_1 = -$	$h_{1L}^{\perp} = {} - \swarrow}$			
	H	$f_{1}^{\perp} = $	$g_{1T} = \underbrace{\bullet}^{\bullet} - \underbrace{\bullet}^{\bullet}$	$h_1 = \underbrace{{\textcircled{1}}}_{1} - \underbrace{{\textcircled{1}}}_{1}$			
2	Т	$J_{1T} - \bullet - \bullet$		$h_{1T}^{\perp} = \bigodot - \bigodot$			

transversity

- chiral-odd structure also in collinear kin.
- only way to determine the tensor charge $\delta^q(Q^2) = \int_0^1 dx h_1^{q-\bar{q}}(x,Q^2)$
- no chiral-odd structures in SM Lagrangian; potential doorway to BSM Example: in SMEFT's, neutron EDM dn is source of strong CP violation

bounds from exp. $\longrightarrow d_n = \delta u d_u + \delta d_d + \delta s d_s$ tensor charge

Mechanisms for transversity

Collins effect $\mathbf{S}_{\mathsf{T}} \cdot \mathbf{k} \times \mathbf{P}_{\mathsf{h}\mathsf{T}}$ Collins, N.P. B396 (93) 161

 $h_1(x,k_\perp) \otimes H_1^\perp(z,P_\perp)$

transversity as TMD

di-hadron mechanism $\mathbf{S}_{\mathsf{T}} \cdot \mathbf{P}_2 \times \mathbf{P}_1 = \mathbf{S}_{\mathsf{T}} \cdot \mathbf{P}_h \times \mathbf{R}_{\mathsf{T}}$ Collins et al., N.P. **B420** (94)

 $h_1(x) H_1^{\triangleleft}(z, R_T^2)$

transversity as PDF

 $j_T^2 \ll Q^2 = (P_T^{jet})^2$ hybrid factorisation:

hadron-in-jet Collins effect $h_1(x) [C(z, \mu) \otimes H_1^{\perp}(z_h, j_T, P_T^{\text{jet}}R)]$ transversity as PDF

Λ spin transfer

 $h_1(x) H_1(z)$

transversity as PDF

and also in π p[↑] Drell-Yan $h_1^{\perp}(x_1, k_{1\perp}) \otimes h_1(x_2, k_{2\perp})$ transversity as TMD

Phenomenology of Transversity

most recent extractions

	Mechanism	Framework	SIDIS	e+e-	p-p collisions	N pts
PV 2018 arXiv:1802.05212	collinear DiFF	LO	~	~	 ✓ 	78
JAM 2020 arXiv:2002.08384	Collins effect	generalized parton model	>	~	 ✓ 	517
MEX 2019 arXiv:1912.03289	collinear DiFF	LO	~	~	×	68
CA 2020 arXiv:2001.01573	Collins effect	generalized parton model	~	>	×	76
JAM 2022 arXiv:2205.00999	Collins effect	generalized parton model	~	~	~	634

Phenomenology of Transversity

most recent extractions

	Mechanism	Framework	SIDIS	e+e-	p-p collisions	N pts
PV 2018 arXiv:1802.05212	collinear DiFF	LO	~	~	 ✓ 	78
JAM 2020 arXiv:2002.08384	Collins effect	generalized parton model	~	>	 ✓ 	517
MEX 2019 arXiv:1912.03289	collinear DiFF	LO	~	~	×	68
CA 2020 arXiv:2001.01573	Collins effect	generalized parton model	~	~	×	76
JAM 2022 arXiv:2205.00999	Collins effect	STAR 🛧 rton model	~	~	~	634

Tensor charge

- JAM22 includes Soffer bound => δ^{d} similar to others, δ^{u} still larger (effect of A_N data?)
- JAM22 includes lattice g_T results in the fit => statistically compatible by construction

Electron-Ion Collider

- JAM22 and PV 2018 do not => tension with lattice why??

New and future data for transversity studies

- new 3-D a_{n} - π , K, p, pbar

 10^{-1}

 $x_{\rm N}$

talk by G. Sohnell 2×10⁻ x_{N} • COMPĂSS Collins effect $\int_{1}^{\infty} \int_{1}^{0} \int_{1}^{1} \int_{1}^{1} \int_{1}^{0} \int_{1}^{0} \int_{1}^{1} \int_{1}^{0} \int_{1}^{0} \int_{1}^{1} \int_{1}^{0} \int_{1}^{0} \int_{1}^{1} \int_{1}^{0} \int_{0}^{1} \int_{1}^{0} \int_{0}^{1} \int_{1}^{0} \int_{0}^{1} \int_{0}^{1}$ 2025 6 transversity induced by Applarization +36834 [™]0.2 • COMPAS $\pi p^{\uparrow} DY by Compass: {}^{10^{-1}}h_{1,\pi}^{\perp} \otimes h_{1,p}^{0.2 \ 0.4 \ 0.6 \ 0.8 \ 0.9}$ $M \downarrow (\text{GeV}/c^2)$ EP 02(2021)16 LECOM talk by R. Longo LFC-JAM20

Airapetian et al., JHEP12 (2020) 010

talks by A. Bressan F. Bradamante

New and future data for transversity studies

- new 3-D $\frac{1}{4}$ $\frac{1}{4$ talk by G. Sohnell Airapetian et al., JHEP12 (2020) 010 Collins effect $1^{-0.2}$ 1^{-0 talks by A. Bressan transversity induced by Applarization F. Bradamante $\pi p^{\uparrow} DY by Compass: 10^{-1} h_{1,\pi}^{\perp} \otimes h_{1,p}^{0.2 \ 0.4 \ 0.6 \ 0.8 \ 0.9}$ talk by R. Longo 10^{-1}
- Compass run with transversely polarized ⁶LiD => will improve h_1^d
- JLab12 Hall-A TSSA with "neutron target" (SoLID) => improve $h_1^{u,d}$
- LHCspin => p-p[↑] DY => $h_{1,p}^{\perp} \otimes h_{1,p}$
- Amber $=> \pi$, K DY $=> h_{1,\pi,K}^{\perp} \otimes h_{1,p}$
- FermiLab "LongQuest" spin-1 => $pD^{\uparrow} => h_{1,p}^{\perp} \otimes h_{1,D}$

talk by P. Di Nezza

talk by N. Wuerfel

The EIC impact

1.0

hadron-in-jet Collins effect

Arratia et al., arXiv:2007.07281

Sivers effect

		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	$f_1 = oldsymbol{eta}$	×	$h_1^\perp = (\uparrow) - (\downarrow)$
	L	×	$g_1 = -$	$h_{1L}^{\perp} = \bigcirc - \bigcirc$
	т	$f_{1T}^{\perp} = \bigodot$ - \bigodot	$g_{1T} = \stackrel{\bullet}{\underbrace{\bullet}} - \stackrel{\bullet}{\underbrace{\bullet}}$	$h_1 = \textcircled{1}$ - $\textcircled{1}$
				$h_{1T}^{\perp} = \bigodot - \bigodot$

Sivers

distortion of quark momentum distribution by nucleon spin

Sivers

the quark Sivers TMD is not universal !

Prediction of QCD: Sivers TMD (SIDIS) = - Sivers TMD (Drell-Yan)

Sivers Phenomenology

most recent extractions of quark Sivers

	Framework	SIDIS	DY	W/Z production	e+e-	N of points
JAM 2020 arXiv:2002.08384	extended parton model	>	>	~	>	517
Pavia 2020 arXiv:2004.14278	LO+NLL	>	>	~	×	150
EKT 2020 arXiv:2009.10710	NLO+N ² LL	>	>	~	×	243
BPV 2020 arXiv:2012.05135 arXiv:2103.03270	ζ prescription	~	~	~	×	76

all parametrizations are in fair agreement for valence flavors

sea-quarks ~ $O(10^{-3})$ smaller

Bacchetta et al., arXiv:2004.14278

TMDs are related to hadronic matrix elements of bilocal operators; color gauge links must connect the two points to restore color gauge invariance;
 gluons have a more complicated structure than quarks:

New and future data for Sivers studies

- new 3-D analysis of Collins effect from Hermes, with final $h = \pi$, K, p, pbar talk by G. Schnell • COMPASS, 2015 + 2018 Full Data Sample different et al., JHEP12 (2020) 010 COMPASS Drell-Yan, NH, $4.3 < M_{uu}/(\text{GeV}/c^2) < 8.5$ 2015+2018 data preliminary Sivers effect for ρ^0 measured by Compass talks by A. Bressan E. Bradamante
- 0.5 10^{-2} 10^{-1} 10^{-1} $q_{\rm T}^2 ({\rm GeV/c})^{3/4}$ 1 1 M_{uu} (GeV/ c^2) $x_{\rm F}$ **π** p[↑] DY by Compass: $f_{1,\pi} \otimes f_{1T,p}^{\perp}$ $A_{\mathrm{T}}^{\mathrm{sin}(\phi_{\mathrm{S}})}$ COMPASS pr -Drell-Yan, NH, 2015+2018 data sign change talk by R. Longo JHEP 02(2021)166 - LFCQM SPM JAM20 no sign change Toring -0.1 4×10^{-2} 10^{-1} 2×10⁻ $x_{\rm N}$

-0.2

New and future data for Sivers studies

- new 3-D analysis of Collins effect from Hermes, with final $h = \pi$, K, p, pbar talk by G. Schnell - compass, 2015 + 2018 Full Data Sample direct et al., JHEP12 (2020) 010 Sivers effect for ρ^0 measured by Compass f = 0 $\sigma^0 = 0$ $\sigma^0 =$

> JHEP 02(2021)16 LFCQM SPM JAM20

 4×10^{-2}

 10^{-1}

2×10⁻

no sign change

 D^0, \overline{D}^0

 $J/\psi,\psi'$

- FermiLab E1039 "SpinQuest" => pp[↑] & pD[↑] => $f_{1,p} \otimes f_{1T,p,D}^{\perp}$
- talk by N. Wuerfel

talk by P. Di Nezza

Electron-Ion Collider

- LHCspin => p-p[↑] DY => $f_{1,p} \otimes f_{1T,p}^{\perp}$

talk by R. Longo

The EIC Impact

The EIC Impact

The TMD "zoo" at leading twist

The unpolarized quark TMD f_1^{q}

the best known TMD (most recent fits)

Lessons to be learnt :

- non-perturbative k_T dependence is not a simple Gaussian
- average <k_T²> strongly depends on x, and might depend on flavor (in particular for fragmentation; recent attempt on SV19)
- Gaussian non perturbative evolution seems preferred

	Framework	HERMES	COMPASS	DY	Z production	N of points	χ^2/N_{points}
PV 2017 arXiv:1703.10157	NLL	>	>	>	>	8059	1.5
SV 2017 arXiv:1706.01473	NNLL'	×	×	>	>	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	×	×	>	>	457	1.17
SV 2019 arXiv:1912.06532	N ³ LL	>	>	>	>	1039	1.06
PV 2019 arXiv:1912.07550	N ³ LL	×	×	>	>	353	1.07
SV19 + flavor dep. arXiv:2201.07114	N ³ LL	×	×	>	~	309	<1.08>
MAPTMD 2022 arXiv:2206.07598	N ³ LL	>	~	>	~	2031	1.06

The unpolarized quark TMD f₁q

the best known TMD (most recent fits)

the best known TMD (most recent fits)

The TMD evolution of f_1^q

$$TMD(x, b_T; \mu_f, \zeta_f) = Evo(\mu_f, \zeta_f; \mu_i, \zeta_i) TMD(x, b_T; \mu_i, \zeta_i)$$
$$Evo(\mu_f, \zeta_f; \mu_i, \zeta_i) = \exp\left[S_{pert}(\mu_f, \mu_i; \zeta_f)\right] \exp\left[\frac{1}{2}K(b_T, \mu_b) \ln(\zeta_f/\zeta_i)\right]$$

Collins-Soper kernel $K = \gamma_{\zeta} = -2\mathscr{D}$ drives the evolution in rapidity ζ (including the unknown non perturbative part); can be computed on lattice

Shanahan, MW, Zhao, PRD 104 (2021)

The TMD evolution of f_1^q

$$TMD(x, b_T; \mu_f, \zeta_f) = Evo(\mu_f, \zeta_f; \mu_i, \zeta_i) TMD(x, b_T; \mu_i, \zeta_i)$$
$$Evo(\mu_f, \zeta_f; \mu_i, \zeta_i) = \exp\left[S_{pert}(\mu_f, \mu_i; \zeta_f)\right] \exp\left[\frac{1}{2}K(b_T, \mu_b) \ln(\zeta_f/\zeta_i)\right]$$

Collins-Soper kernel $K = \gamma_{\zeta} = -2\mathscr{D}$ drives the evolution in rapidity ζ (including the unknown non perturbative part); can be computed on lattice

- useful channels: heavy-quarkonium production

talk by M. Echevarria

$p + p \to \eta_{c,b} + X$
$p + p \to \chi_{c,b} + X$
$p + p \rightarrow H^0 + X$
$p+p \rightarrow \gamma + \gamma + X$
$p + p \rightarrow J/\psi + \gamma^* + X$
$p+p \to J/\psi + Z + X$
$p+p \to J/\psi + J/\psi + X$
$p+p \rightarrow \eta_c + \eta_c + X$
$e + p \rightarrow e + c + \bar{c} + X$
$e + p ightarrow e + J/\psi + jet + J$
$e+p \rightarrow e+J/\psi+\pi+X$
$e+p \rightarrow e+J/\psi + X$
$e^+ + e^- ightarrow J/\psi + \pi + X$

factorization proven

ansatz 2 soft mechanisms: - soft gluon resum. - formation of bound state

Boer et al., arXiv:2004.06740 Boer et al., arXiv:2102.00003 D'Alesio et al., arXiv:2110.07529

talks by C. Pisano	
L. Maxia	
R. Kishore	
Comme Mannue	Électron-Ion Collider

Future data for unpol. gluon TMDs

- LHCspin => ex.
$$pp^{(\uparrow)} \rightarrow J/\psi + J/\psi + X$$

talk by P. Di Nezza

- also complementarity of colliders:

$f_{1}^{g[+,+]}$	$pp \rightarrow \gamma J/\psi X$	LHC
	$pp \to \gamma \Upsilon X$	LHC
$f_1^{g[+,-]}$	$pp \to \gamma \operatorname{jet} X$	LHC & RHIC
$h_1^{\perp g [+,+]}$	$e p \to e' Q \overline{Q} X$	EIC
	$e \ p \to e' \ \text{jet jet} \ X$	EIC
	$pp \to \eta_{c,b} X$	LHC & NICA
	$pp \to H X$	LHC
$h_1^{\perp g [+,-]}$	$pp \to \gamma^* \operatorname{jet} X$	LHC & RHIC

Boer, talk at IWHSS2020

The EIC impact

MAPTMD22 coverage

0.04

-0.2

Adam et al., ATHENA Coll.

х

Electron-Ion Collider

1

More stuff ...

unpolarized azimuthal asymm.: 3-D analysis of $A_{UU}^{\cos\phi}$, $A_{UU}^{\cos2\phi}$ from Compass also for di-hadron final state talk by A. Moretti - twist-3 beam spin asymm. (BSA): $A_{LU}^{\sin\phi}$ from Compass and Hermes talks by A. Moretti G. Schnell contains $e(x, k_{\perp}) \otimes H_{\perp}^{\perp}(z, P_{\perp})$ - twist-3 BSA: $A_{LU}^{\sin\phi}$ from CLAS(6+12) with di-hadron final state talks by C. Dilks contains $e(x) H_1^{\triangleleft}(z, M_{\pi\pi})$ A. Courtoy + decomposition of di-hadron FF in partial waves talks by T. Hayward - JLab BSA with 2 back-to-back hadrons: first evidence of Fracture Funct. F. Benmokhtar - exclusive processes for GPD extraction talks by Dupre', d'Hose, Hobart, Kumericki, Sznajder strategies for GTMD: quark => exclusive double DY gluon => exclusive di-jet in (pol.) e-p at the EIC GTMD => access to OAM of quarks and gluons talks by S. Bhattacharya F. Yuan **Electron-Ion Collider**

Backup

Remarks on Sivers extractions

- Most fits use all correlated projections of moreover, EKT20 artificially enhance we factor 13, still getting tension between ST $(\chi^2/Npts = 1.44)$

 $\begin{array}{c} 0.3 \\ 0.2 \\ 0.1 \\ 0.0 \\ -0.1 \\ -0.2 \\ -0.3 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.5 \\ 0.$

set;

gure 1: The first transverse moment $x f_{1T}^{\perp(1)}$ of the Sivers TMD as a function of x for the up (upper panel) and down quark (lower panel). Solid

Sivers function for sea quarks is very small and compatible with ze

eneral, the result of a fit is biased whenever a specific fitting functional form is cho we tried to reduce this bias by adopting a flexible functional form, as it is evide

we stress that our extraction is still affected by this bias and extrapolations ou

R data by

U

01

 $L_{\rm d}(-x)$

 10^{-3}

 $x;10~{\rm GeV})$

DIS data

-0.5

- JAM20 and TO-CA use Generalized in the second of the observation of the observation
 - Hard to compare BPV20 with restance with the care. At variance with other studies, synthetry in Eq. (0) (\$ x \$ 0.3) should be taken with due care. At variance with other studies, synthetry in Eq.(10) we arousing upplaying TMD shot were extracted from data in our CSS formalism; in any case, there is there is the example of the studies of the stu

