

Transversity 2022 highlights and the Physics of SIDIS

Marco Radiči
INFN Pavia

Transversity 2022 in numbers

65 registered 49 in person, 16 remote

57 talks, 8 from remote 16 short talks

$$
+
$$

Piet Mulders' fest for his 70 ${ }^{\text {th }}$ birthday

Ėlectron-Ion Collider

Transversity 2022 outline

Mostly focus on

Semi-Inclusive Deep-Inelastic Scattering (SIDIS)

with various final states " \mathbf{h} ":
light- / heavy-quark hadrons jets, hadron-in-jet, etc..

Factorization th.'s available (not everywhere!) for $P_{h T}^{2} / z^{2} \ll Q^{2}$
but also exclusive processes...

DMMP electron meson and specific diffractive channels

From the point of view of a theoretician...

From the point of view of a theoretician...

What do we know about them ? Where do we learn more?

The TMD "zoo" at leading twist

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	U	$f_{1}=\bigcirc$	x	$h_{1}^{\perp}=$ - \dagger
	L	x	$g_{1}=\cdots \rightarrow$	$h_{1 L}^{\perp}=\bigcirc \rightarrow-$
	T	$f_{1 T}^{\perp}=\stackrel{\downarrow}{\bullet}-\ominus$	$g_{1 T}=\stackrel{\dagger}{\bullet}-\stackrel{1}{\bullet}$	$\begin{gathered} h_{1}=(\\ h_{1 T}^{\perp}= \end{gathered}$

deformations induced by spin-momentum correlations

each TMD is connected to a specific measurable SIDIS spin asymmetry

The TMD "zoo" at leading twist

deformations induced by spin-momentum correlations

each TMD is connected to a specific measurable SIDIS spin asymmetry

Transversity

- chiral-odd structure also in collinear kin.
- only way to determine the tensor charge $\quad \delta^{q}\left(Q^{2}\right)=\int_{0}^{1} d x h_{1}^{q-\bar{u}}\left(x, Q^{2}\right)$
- no chiral-odd structures in SM Lagrangian; potential doorway to BSM Example: in SMEFT's, neutron EDM d_{n} is source of strong CP violation

$$
\text { bounds from exp. } \longrightarrow d_{n}=\delta u d_{u}+\delta d d d_{d}+\delta s d_{s}
$$

Mechanisms for transversity

Collins effect $h_{1}\left(x, k_{\perp}\right) \otimes H_{1}^{\perp}\left(z, P_{\perp}\right)$ $\mathrm{S}_{\mathrm{T}} \cdot \mathbf{k} \times \mathbf{P}_{\mathrm{hT}}$
transversity as TMD
Collins, N.P. B396 (93) 161

di-hadron mechanism
$\mathbf{S}_{\mathrm{T}} \cdot \mathbf{P}_{2} \times \mathbf{P}_{1}=\mathbf{S}_{\mathrm{T}} \cdot \mathbf{P}_{\mathrm{h}} \times \mathbf{R}_{\mathrm{T}}$
Collins et al., N.P. B420 (94)

$$
\begin{aligned}
& \qquad h_{1}(x) H_{1}^{\Varangle}\left(z, R_{T}^{2}\right) \\
& \text { transversity as PDF }
\end{aligned}
$$

hadron-in-jet Collins effect
$j_{T}^{2} \ll Q^{2}=\left(P_{T}^{j e t}\right)^{2}$ hybrid factorisation:

Λ spin transfer $h_{1}(x) H_{1}(z)$ transversity as PDF
$h_{1}(x)\left[C(z, \mu) \otimes H_{1}^{\perp}\left(z_{h}, j_{T}, P_{T}^{\text {jet }} R\right)\right]$ transversity as PDF and also in $\pi \mathrm{p} \uparrow$ Drell-Yan $h_{1}^{\perp}\left(x_{1}, k_{1 \perp}\right) \otimes h_{1}\left(x_{2}, k_{2 \perp}\right)$ transversity as TMD

Phenomenology of Transversity

most recent extractions

	Mechanism	Framework	SIDIS	e+e-	p-p collisions	N pts
PV 2018 arXiv:1802.05212	collinear DiFF	LO	\checkmark	\checkmark	\checkmark	78
JAM 2020 arXiv:2002.08384	Collins effect	generalized parton model	\checkmark	\checkmark	\checkmark	517
MEX 2019 arXiv:1912.03289	collinear DiFF	LO	\checkmark	\checkmark	X	68
CA 2020 arXiv:2001.01573	Collins effect	generalized parton model	\checkmark	\checkmark	x	76
JAM 2022 arXiv:2205.00999	Collins effect	generalized parton model	\checkmark	\checkmark	\checkmark	634

Phenomenology of Transversity

most recent extractions

	Mechanism	Framework	SIDIS	e+e-	p-p collisions	N pts
PV 2018 arXiv:1802.05212	collinear DiFF	LO	\checkmark	\checkmark	\checkmark	78
JAM 2020 arXiv:2002.08384	Collins effect	generalized parton model	\checkmark	\checkmark	\checkmark	517
MEX 2019 arXiv:1912.03289	collinear DiFF	LO	\checkmark	\checkmark	x	68
CA 2020 arXiv:2001.01573	Collins effect	generalized parton model	\checkmark	\checkmark	x	76
JAM 2022 arXiv:2205.00999	Collins effect	generalized parton model	\checkmark	\checkmark	\checkmark	634

other works with STAR data

hadron-in-jet
Collins effect

> talks by M. Grosse-Perdekamp
> W.W. Jacobs

KPRY Kang et al.,
P.L. B774 (17) 635

DMP D'Alesio et al.,
P.L. B773 (17) 300
di-hadron mechanism

Tensor charge

- JAM22 includes Soffer bound $=>\delta^{d}$ similar to others, δ^{u} still larger (effect of A_{N} data?)
- JAM22 includes lattice gт results in the fit => statistically compatible by construction
- JAM22 and PV 2018 do not => tension with lattice why??

What about gluons?

$$
\text { in spin- } 1 / 2 \text { proton } \rightarrow \text { no gluon transversity }
$$

$$
\max \Delta S_{L}=\left|S_{L}^{\prime}-S_{L}\right|
$$

in spin-1 deuteron \rightarrow gluon "transversity" because for transverse tensor polarization it can be $\Delta \mathrm{s}_{\mathrm{L}}=2$

talks by D. Boer and S. Kumano

since standard convolution model for deuteron does not reproduce data for the tensor struct. fnct. $b_{1}(x)$

what is the mechanism for the gluon transversity $\mathrm{h}_{1 \mathrm{~T}^{\mathrm{g}}}(\mathrm{x})\left(\right.$ or $\left.\Delta_{\mathrm{T}} \mathrm{g}(\mathrm{x})\right)$?

New and future data for transversity studies

- new 3-D analysis of Collins effect from Hermes, with final $h=\pi, K, p, p b a r$ talk by G. Schnell
- Collins effect for ρ^{0} measured by Compass
- transversity induced by Λ polarization p.L. B824(22)/36834

Airapetian et al., JHEP12 (2020) 010
talks by A. Bressan
F. Bradamante

- $\quad \pi \mathrm{p} \uparrow$ DY by Compass: $h_{1, \pi}^{\perp} \otimes h_{1, p}$ talk by R. Longo

New and future data for transversity studies

- new 3-D analysis of Collins effect from Hermes, with final $h=\pi, K, p, p b a r$ talk by G. Schnell

Airapetian et al., JHEP12 (2020) 010

- Collins effect for ρ^{0} measured by Compass
- transversity induced by Λ polarization
P.L. B824 (22) 136834

talks by A. Bressan
F. Bradamante

- $\quad \pi \mathrm{p} \uparrow$ DY by Compass: $h_{1, \pi}^{\perp} \otimes h_{1, p}$ talk by R. Longo

- Compass run with transversely polarized ${ }^{6}$ LiD $=>$ will improve $h_{1}{ }^{d}$
- JLab12 Hall-A TSSA with "neutron target" (SoLID) => improve h1 $h_{1}{ }^{u, d}$
- LHCspin $=>$ p-p \uparrow DY $=>h_{1, p}^{\perp} \otimes h_{1, p} \quad$ talk by P. Di Nezza
- Amber $=>\pi, \mathrm{K} \quad \mathrm{DY}=>h_{1, \pi, K}^{\perp} \otimes h_{1, p}$ FermiLab "LongQuest" spin-1 $=>\mathrm{pD} \uparrow=>h_{1, p}^{\perp} \otimes h_{1, D}$

The EIC impact

arXiv:2103.05419,

N.P.A in press

Collins effect JAM20 JAM20 + EIC(ep) JAM20 $+\operatorname{EIC}\left(e p+e^{3} H e\right)$
 $\mathcal{L}=10 \mathrm{fb}^{-1}, 8223$ data pts. proton [GeV]: $5 \times 41,5 \times 100,10 \times 100,18 \times 275$ ${ }^{3} \mathrm{He}[\mathrm{GeV}]: 5 \times 41,5 \times 100,18 \times 100$

di-hadron mechanism

$\mathcal{L}=10 \mathrm{fb}^{-1}, 3852$ data pts, proton $\&^{3} \mathrm{He}[\mathrm{GeV}]: 10 \times 100$

hadron-in-jet Collins effect

Arratia et al., arXiv:2007.07281

Sivers effect

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	U	$f_{1}=\bullet$	x	$h_{1}^{\perp}=($ -
	L	x	$g_{1}=\multimap \rightarrow$	$h_{1 L}^{\perp}=\bigcirc \rightarrow$
	T		$g_{1 T}=\stackrel{\dagger}{\oplus}-\stackrel{\dagger}{\bullet}$	$\begin{gathered} h_{1}=(\\ h_{1 T}^{\perp}=1 \end{gathered}$

Sivers
distortion of quark momentum distribution by nucleon spin

Bacchetta et al., P.L. B827 (22) 136961, arXiv:2004.14278

Ėlectron-Ion Collider

Sivers

the quark Sivers TMD is not universal !

in SIDIS, gauge link structure is "future pointing" \rightarrow describes residual color final-state interactions

in Drell-Yan, gauge link structure is "past pointing" \rightarrow describes color initial-state interactions

Prediction of QCD: Sivers TMD $($ SIDIS $)=-$ Sivers TMD $($ Drell-Yan $)$

Sivers Phenomenology

most recent extractions of quark Sivers

	Framework	SIDIS	DY	$\begin{gathered} \text { W/Z } \\ \text { production } \end{gathered}$	e+e-	N of points
JAM 2020 arXiv:2002.08384	extended parton model	\checkmark	\checkmark	\checkmark	\checkmark	517
Pavia 2020 arXiv:2004. 14278	LO+NLL	\checkmark	\checkmark	\checkmark	X	150
$\begin{aligned} & \text { EKT } 2020 \\ & \text { arXiv:2009. } 10710 \end{aligned}$	$\mathrm{NLO}+\mathrm{N}^{2} \mathrm{LL}$	\checkmark	\checkmark	\checkmark	X	243
$\begin{aligned} & \text { BPVV } 2020 \\ & \begin{array}{l} \text { arriv:2012.05135 } \\ \text { arXiv:2103.03270 } \end{array} \end{aligned}$	ζ prescription	\checkmark	\checkmark	\checkmark	X	76

all parametrizations are in fair agreement for valence flavors
sea-quarks $\sim O\left(10^{-3}\right)$ smaller

Bacchetta et al., arXiv:2004.14278

The Sign Change Puzzle

- $\pi \mathrm{p} \uparrow$ DY by Compass: $f_{1, \pi} \otimes f_{17, p}^{\perp}$ compatible with sign change
talk by R. Longo

predictions on recent STAR DY data
talk by W.W. Jacobs

The Sign Change Puzzle

- $\pi \mathrm{p} \uparrow$ DY by Compass: $f_{1, \pi} \otimes f_{17, p}^{\perp}$ compatible with sign change
talk by R. Longo

What about gluons ?

- TMDs are related to hadronic matrix elements of bilocal operators; color gauge links must connect the two points to restore color gauge invariance; gluons have a more complicated structure than quarks:

different	f-type (WW)
processes	$[+,+],[-,-]$

different
TMDs!

$$
\begin{gathered}
\text { d-type (dipole) } \\
{[+,-],[-,+]}
\end{gathered}
$$

- $f_{1 T}^{\perp, g[+,+]}$ can be extracted in $e p^{\uparrow} \rightarrow e^{\prime} Q \bar{Q} X$ at the EIC

talk by D. Boer - $f_{1 T}^{\perp, g[+,-]}$ at small x related to the spin-dep. Odderon only contribution to $p p^{\uparrow} \rightarrow h^{ \pm} X$ at $x_{F}<0$; RHIC / NICA ?

$f_{1 T}^{\perp g[+,+]}$	$e p^{\uparrow} \rightarrow e^{\prime} Q \bar{Q} X$	EIC
	$e p^{\uparrow} \rightarrow e^{\prime}$ jet jet X	EIC
$f_{1 T}^{\perp g[-,-]}$	$p^{\uparrow} p \rightarrow \gamma \gamma X$	RHIC
$f_{1 T}^{\perp g[+,-]}$	$p^{\uparrow} A \rightarrow \gamma^{(*)}$ jet X	RHIC
	$p^{\uparrow} A \rightarrow h X\left(x_{F}<0\right)$	RHIC \& NICA

New and future data for Sivers studies

- new 3-D analysis of Collins effect from Hermes, with final $h=\pi, K, p, p b a r$ talk by G. Schnell
- Sivers effect for ρ^{0} measured by Compass
talks by A. Bressan
F. Bradamante
- $\pi \mathrm{p} \uparrow$ DY by Compass: $f_{1, \pi} \otimes f_{1 T, p}^{\perp}$ talk by R. Longo

New and future data for Sivers studies

- new 3-D analysis of Collins effect from Hermes, with final $h=\pi, K, p, p b a r$ talk by G. Schnell
- Sivers effect for ρ^{0} measured by Compass

```
talks by A. Bressan
    F. Bradamante
```

- $\pi p \uparrow$ DY by Compass: $f_{1, \pi} \otimes f_{1 T, p}^{\perp}$ talk by R. Longo
- FermiLab E1039 "SpinQuest" $=>\mathrm{pp} \uparrow \& \mathrm{pD} \uparrow=>f_{1, p} \otimes f_{17, p, D}^{\perp} \quad$ talk by N . Wuerfel
- LHCspin $=>$ p-p \uparrow DY $=>f_{1, p} \otimes f_{1 T, p}^{\perp}$

The EIC Impact

The EIC Impact

opportunities with jets and Heavy Flavors

talk by F. Ringer

electron-jet azimuthal correlations

$$
\left|\vec{q}_{T}\right|=\left|\vec{p}_{T}^{e}+\vec{p}_{T}^{j e t}\right| \ll\left|\vec{p}_{T}^{j e t}\right|
$$

$A_{\cup T} \sim d \sigma\left(S_{T}\right)-d \sigma\left(-S_{T}\right)$
Sivers effect free from TMD FF
also access to gluon Sivers TMD from $D^{0} \bar{D}^{0}$, charm di-jets and J / Ψ production

Zheng et al., arXiv:1805.05290
Rajesh et al., arXiv:2108.04866

The TMD "zoo" at leading twist

deformations induced by spin-momentum correlations

each TMD is connected to a specific measurable SIDIS spin asymmetry

The unpolarized quark TMD $f_{1} q$

the best known TMD (most recent fits)

Lessons to be learnt :

- non-perturbative k_{T} dependence is not a simple Gaussian
- average $\left.<\mathrm{k}_{\mathrm{T}^{2}}\right\rangle$ strongly depends on x , and might depend on flavor (in particular for fragmentation; recent attempt on SV19)
- Gaussian non perturbative evolution seems preferred
- modern fits can reach $\mathrm{N}^{3} \mathrm{LL}+\mathrm{NNLO}$ perturbative accuracy with reduced $\mathrm{X}^{2} \sim 1$ on thousands data points
tomography in momentum space

PV 2017

Bacchetta, Delcarro, Pisano, Radici, Signori, JHEP 06 (17) 081

	Framework	HERMES	COMPASS	DY	$\underset{\text { production }}{\mathrm{Z}}$	N of points	$\chi^{2} / N_{\text {points }}$
PV 2017 arXiv:1703.10157	NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059	1.5
SV 2017 arXiv:1706.01473	NNLL'	x	x	\checkmark	\checkmark	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	x	x	\checkmark	\checkmark	457	1.17
SV 2019 arXiv:1912 06532	N3LL	\checkmark	\checkmark	\checkmark	\checkmark	1039	1.06
$\begin{gathered} \text { PV } 2019 \\ \text { arXiv:1912.07550 } \end{gathered}$	N3LL	x	x	\checkmark	\checkmark	353	1.07
SV19 + flavor dep. arXiv:2201.07114	N3LL	x	x	\checkmark	\checkmark	309	<1.08>
MAPTMD 2022 arXiv:2206.07598	N3LL	\checkmark	\checkmark	\checkmark	\checkmark	2031	1.06

The unpolarized quark TMD $f_{1} q$

the best known TMD (most recent fits)
same accuracy as PDF benchmarking codes @LHC

	Framework	HERMES	COMPASS	DY	$\begin{gathered} \mathrm{Z} \\ \text { production } \end{gathered}$	N of points	$\chi^{2} / N_{\text {points }}$
$\begin{gathered} \text { PV } 2017 \\ \text { arxiv:1703.10157 } \end{gathered}$	NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059	1.5
$\begin{gathered} \text { SV } 2017 \\ \text { arXiv:1706.01473 } \end{gathered}$	NNLL'	x	x	\checkmark	\checkmark	309	1.23
$\begin{gathered} \text { BSV } 2019 \\ \text { arXiv:1902.08474 } \end{gathered}$	NNLL'	x	x	\checkmark	\checkmark	457	1.17
$\begin{gathered} \text { SV } 2019 \\ \text { arxiv:1912.06532 } \end{gathered}$	N3LL	\checkmark	\checkmark	\checkmark	\checkmark	1039	1.06
$\begin{gathered} \text { PV } 2019 \\ \text { arxiv:1912.07550 } \end{gathered}$	N3LL	X	X	\checkmark	\checkmark	353	1.07
SV19 + flavor dep arXiv:2201.07114	N3LL	x	X	\checkmark	\checkmark	309	<1.08>
MAPTMD 2022 arXiv:2206.07598	N3LL	\checkmark	\checkmark	\checkmark	\checkmark	2031	1.06

Z production at $\eta=0$ (ATLAS kin)
G. Bozzi, I. Scimemi (eds.) et al.,

Yellow Report of CERN EW WG, in preparation

The MAPTMD22 fit

the best known TMD (most recent fits)

Bacchetta et al., arXiv:2206.07598

the new MAPTMD22 fit

talk by V. Bertone

	Framework	HERMES	COMPASS	DY	$\begin{gathered} \mathrm{Z} \\ \text { production } \end{gathered}$	N of points	$\mathrm{X}^{2} / N_{\text {points }}$
PV 2017 arXiv:1703.10157	NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059	1.5
$\begin{gathered} \text { SV } 2017 \\ \text { ardiv:1706.01473 } \end{gathered}$	NNLL'	x	x	\checkmark	\checkmark	309	1.23
$\begin{gathered} \text { BSV } 2019 \\ \text { arXiv:1902.08474 } \end{gathered}$	NNLL'	x	x	\checkmark	\checkmark	457	1.17
$\begin{gathered} \text { SV } 2019 \\ \text { arxiv:1912.06532 } \end{gathered}$	N3LL	\checkmark	\checkmark	\checkmark	\checkmark	1039	1.06
$\begin{gathered} \text { PV } 2019 \\ \text { ardiv:1912.07550 } \end{gathered}$	N3LL	x	x	\checkmark	\checkmark	353	1.07
SV19 + flavor dep arXiv:2201.07114	N3LL	x	x	\checkmark	\checkmark	309	<1.08>
MAPTMD 2022 arXiv:2206.07598	N3LL	\checkmark	\checkmark	\checkmark	\checkmark	2031	1.06

kin. cuts and coverage
DY $q_{T} / Q<0.2$
SIDIS $P_{h T}=\min [\min [0.2 Q, 0.5 z Q]+0.3, z Q]$

$$
Q>1.4 \mathrm{GeV}, 0.2<z<0.7
$$

2031 exp. pts., 21 parameters

The MAPTMD22 fit

TMD PDF
Sum of two Gaussians and a weighted Gaussian

x-dep. widths

TMD FF
Sum of a Gaussians and a weighted Gaussian z-dep. widths

The MAPTMD22 fit

it happens also in other bins and for Hermes data as well

The MAPTMD22 fit

Where is the limit of applicability of the TMD formalism ?!

it happens also in other bins and for Hermes data as well

The TMD evolution of $f_{1} q$

$$
\begin{aligned}
& \operatorname{TMD}\left(x, b_{T} ; \mu_{f}, \zeta_{f}\right)=\operatorname{Evo}\left(\mu_{f}, \zeta_{f} ; \mu_{i}, \zeta_{i}\right) \operatorname{TMD}\left(x, b_{T} ; \mu_{i}, \zeta_{i}\right) \\
& \operatorname{Evo}\left(\mu_{f}, \zeta_{f} ; \mu_{i}, \zeta_{i}\right)=\exp \left[S_{\text {pert }}\left(\mu_{f}, \mu_{i} ; \zeta_{f}\right)\right] \exp \left[\frac{1}{2} K\left(b_{T}, \mu_{b}\right) \ln \left(\zeta_{f} / \zeta_{i}\right)\right]
\end{aligned}
$$

Collins-Soper kernel $K=\gamma_{\zeta}=-2 \mathscr{D}$ drives the evolution in rapidity ζ (including the unknown non perturbative part); can be computed on lattice

The TMD evolution of $f_{1} q$

$$
\begin{aligned}
& \operatorname{TMD}\left(x, b_{T} ; \mu_{f}, \zeta_{f}\right)=\operatorname{Evo}\left(\mu_{f}, \zeta_{f} ; \mu_{i}, \zeta_{i}\right) \operatorname{TMD}\left(x, b_{T} ; \mu_{i}, \zeta_{i}\right) \\
& \operatorname{Evo}\left(\mu_{f}, \zeta_{f} ; \mu_{i}, \zeta_{i}\right)=\exp \left[S_{\text {pert }}\left(\mu_{f}, \mu_{i} ; \zeta_{f}\right)\right] \exp \left[\frac{1}{2} K\left(b_{T}, \mu_{b}\right) \ln \left(\zeta_{f} / \zeta_{i}\right)\right]
\end{aligned}
$$

Collins-Soper kernel $K=\gamma_{\zeta}=-2 \mathscr{D}$ drives the evolution in rapidity ζ (including the unknown non perturbative part); can be computed on lattice

Martinez \& Vladimirov,
arXiv:2206.01105

$b_{T}\left[\mathrm{GeV}^{-1}\right]$
Bacchetta et al., arXiv:2206.07598

talk by M. Wagman

Ėlectron-Ion Collider

What about gluons ?

- useful channels: heavy-quarkonium production
talk by M. Echevarria

$$
\begin{aligned}
& \hline p+p \rightarrow \eta_{c, b}+X \\
& p+p \rightarrow \chi_{c, b}+X \\
& \hline p+p \rightarrow H^{0}+X \\
& p+p \rightarrow \gamma+\gamma+X \\
& p+p \rightarrow J / \psi+\gamma^{*}+X \\
& p+p \rightarrow J / \psi+Z+X \\
& p+p \rightarrow J / \psi+J / \psi+X \\
& p+p \rightarrow \eta_{c}+\eta_{c}+X \\
& e+p \rightarrow e+c+\bar{c}+X \\
& e+p \rightarrow e+J / \psi+j e t+X \\
& e+p \rightarrow e+J / \psi+\pi+X \\
& e+p \rightarrow e+J / \psi+X \\
& e^{+}+e^{-} \rightarrow J / \psi+\pi+X \\
& \hline
\end{aligned}
$$

factorization proven
ansatz
2 soft mechanisms:

- soft gluon resum.
- formation of bound state

What about gluons?

- useful channels: heavy-quarkonium production

talk by M. Echevarria

ansatz

$$
2 \text { soft mechanisms: }
$$

- example: J/ Ψ production

Bacchetta et al., arXiv:1809.02056 D'Alesio et al., arXiv:1908.00446

$$
\begin{array}{|l}
\hline p+p \rightarrow \eta_{c, b}+X \\
p+p \rightarrow \chi_{c, b}+X \\
\hline p+p \rightarrow H^{0}+X \\
p+p \rightarrow \gamma+\gamma+X \\
\hline p+p \rightarrow J / \psi+\gamma^{*}+X \\
p+p \rightarrow J / \psi+Z+X \\
p+p \rightarrow J / \psi+J / \psi+X \\
p+p \rightarrow \eta_{c}+\eta_{c}+X \\
\hline e+p \rightarrow e+c+\bar{c}+X \\
\hline
\end{array}
$$

factorization proven

- soft gluon resum.
- formation of bound state
- cross section has same structure for quarks: $\quad d \sigma^{0} \longrightarrow f_{1}^{g} \otimes A\left[\gamma^{*} g \rightarrow J / \psi\right]+\cos 2 \phi_{J / \psi} h_{1}^{\perp g} \otimes B\left[\gamma^{*} g \rightarrow J / \psi\right]$ Boer et al., arXiv:2004.06740
Boer et al., arXiv:2102.00003
D'Alesio et al., arXiv:2110.07529

talks by C. Pisano
 L. Maxia
 R. Kishore

What about gluons?

- useful channels: heavy-quarkonium production

$$
\begin{array}{lc}
\hline p+p \rightarrow \eta_{c, b}+X & \text { factorization proven } \\
\hline p+p \rightarrow \chi_{c, b}+X & \\
\hline p+p \rightarrow H^{0}+X & \\
p+p \rightarrow \gamma+\gamma+X & \text { ansatz } \\
\begin{array}{ll}
p+p \rightarrow J / \psi+\gamma^{*}+X & \text { soft mechanisms: } \\
p+p \rightarrow J / \psi+Z+X & \text { - soft gluon resum. } \\
p+p \rightarrow J / \psi+J / \psi+X & \text { - formation of bound } \\
p+p \rightarrow \eta_{c}+\eta_{c}+X & \text { state } \\
e+p \rightarrow e+c+\bar{c}+X & \\
\begin{array}{lc}
e+p \rightarrow e+J / \psi+j e t+X \\
e+p \rightarrow e+J / \psi+\pi+X \\
e+p \rightarrow e+J / \psi+X & \\
e^{+}+e^{-} \rightarrow J / \psi+\pi+X & \\
\hline
\end{array}
\end{array} .
\end{array}
$$

 talk by M. Echevarria
 - example: J/ Ψ production

- cross section has same structure for quarks: $\quad d \sigma^{0} \longrightarrow f_{1}^{g} \otimes A\left[\gamma^{*} g \rightarrow J / \psi\right]+\cos 2 \phi_{J / \mu} h_{1}^{\perp g} \otimes B\left[\gamma^{*} g \rightarrow J / \psi\right]$ Boer et al., arXiv:2004.06740
talks by C. Pisano
L. Maxia
R. Kishore

Echevarria, arXiv:1907.06494
Fleming et al., arXiv:1910.03586

New SIDIS data for unpol. proton target

Compass: 2016-17 run on unpol. LH_{2} target; only 11% of data analyzed 4-D analysis ($x, \mathrm{Q}^{2}, \mathrm{z}, \mathrm{P}_{\mathrm{hT}}$) bins; unidentified charged hadrons $h^{ \pm}$ QED radiative corrections included contamination from exclusive VM decay subtracted bin by bin

\mathbf{P}_{ht}-distributions

no evidence of flavor dep. clear z, Q², x dep. deviation from Gaussian at $P_{h t}>1 \mathrm{GeV}$

$$
\begin{aligned}
& \text { talks by A. Bressan } \\
& \text { J. Matousek }
\end{aligned}
$$

New SIDIS data for unpol. proton target

Compass: 2016-17 run on unpol. LH_{2} target; only 11% of data analyzed 4-D analysis ($x, \mathrm{Q}^{2}, \mathrm{z}, \mathrm{P}_{\mathrm{hT}}$) bins; unidentified charged hadrons $h^{ \pm}$ QED radiative corrections included contamination from exclusive VM decay subtracted bin by bin

\mathbf{P}_{ht}-distributions

no evidence of flavor dep. clear z, Q², x dep. deviation from Gaussian at $P_{h t}>1 \mathrm{GeV}$

$$
\left\langle P_{h T}^{2}\right\rangle\left(z^{2}\right)
$$

$$
\begin{aligned}
& \text { talks by A. Bressan } \\
& \text { J. Matousek }
\end{aligned}
$$

parton model: $\left\langle P_{h T}^{2}\right\rangle=z^{2}\left\langle k_{\perp}^{2}\right\rangle+\left\langle P_{\perp}^{2}\right\rangle$ deviations: $\begin{aligned} & \left\langle k_{\perp}^{2}\right\rangle(x) ? \\ & \left\langle P_{\perp}^{2}\right\rangle(z) ?\end{aligned}$

$$
\left\langle P_{\perp}^{2}\right\rangle(z) ?
$$

Future data for unpol. gluon TMDs

- LHCspin $=>$ ex. $\quad p p^{(\uparrow)} \rightarrow J / \psi+J / \psi+X$ talk by P. Di Nezza

- also complementarity of colliders:

$f_{1}^{g[+,+]}$	$p p \rightarrow \gamma J / \psi X$	LHC
$f_{1}^{g}(+,-]$	$p p \rightarrow \gamma \Upsilon X$	LHC
	$p \rightarrow \gamma$ jet X	LHC \& RHIC
$h_{1}^{\perp g[+,+]}$	$e p \rightarrow e^{\prime} Q \bar{Q} X$	EIC
	$e p \rightarrow e^{\prime}$ jet jet X	EIC
	$p p \rightarrow \eta_{c, b} X$	LHC \& NICA
	$p p \rightarrow H X$	LHC
$h_{1}^{\perp g[+,-]}$	$p p \rightarrow \gamma^{*}$ jet X	LHC \& RHIC

Boer, talk at IWHSS2020

The EIC impact

MAPTMD22 coverage

Abdul Khalek et al., arXiv:2103.05419, N.P.A in press

Ėlectron-lon Collider

More stuff ...

- unpolarized azimuthal asymm.: 3-D analysis of $A_{U U}^{\cos \phi}, A_{U U}^{\cos 2 \phi}$ from Compass also for di-hadron final state talk by A. Moretti
- twist-3 beam spin asymm. (BSA): $A_{L U}^{\sin \phi}$ from Compass and Hermes contains $e\left(x, k_{\perp}\right) \otimes H_{1}^{\perp}\left(z, P_{\perp}\right)$
talks by A. Moretti G. Schnell
- twist-3 BSA: $A_{L U}^{\sin \phi}$ from $\operatorname{CLAS}(6+12)$ with di-hadron final state contains $e(x) H_{1}^{\Varangle}\left(z, M_{\pi \pi}\right)$
talks by C. Dilks
A. Courtoy
+ decomposition of di-hadron FF in partial waves
- JLab BSA with 2 back-to-back hadrons: first evidence of Fracture Funct.
talks by T. Hayward
F. Benmokhtar
- exclusive processes for GPD extraction talks by Dupre', d'Hose, Hobart, Kumericki, Sznajder
- strategies for GTMD: quark => exclusive double DY
gluon => exclusive di-jet in (pol.) e-p at the EIC
GTMD $=>$ access to OAM of quarks and gluons
talks by S. Bhattacharya F. Yuan

Backup

Remarks on Sivers extractions

- Most fits use all correlated projections of same data set; moreover, EKT20 artificially enhance weight of STAR data by factor 13, still getting tension between STAR and SIDIS data ($\mathrm{X}^{2} / \mathrm{Npts}=1.44$)
- JAM20 and TO-CA use Generalized Parton Model (GPM) with no TMD evolution and incompatible with Sivers sign change SIDIS-DY; TO-CA use GPM and version CGI-GPM (compatible with sign change), but they get better X^{2} with GPM
- Hard to compare BPV20 with rest of works in CSS formalism; in any case, there are violations of positivity bound for sea quarks at large x

