The Beryllium Anomaly with the MEGII experiment

Hicham Benmansour

Second annual workshop - INTENSE: Particle Physics Experiments at the Intensity Frontier

H2020 MSCA ITN G.A. 858199

SIGNAL

- 28 MeV/c μ continuous beam stopped on a 130 μm polyethylene slanted target (15°)
- Paul Scherrer Institut (Switzerland) has the most intense DC muon beam in the world: up to $10^8 \ \mu/s$
- 5 kinematic variables: $E_e, E_{\gamma}, t_{e\gamma}, \theta_{e\gamma} = e_{\gamma}$

$$e^{+} \mu'$$

$$\bullet \bullet \bullet \gamma$$

$$E_{\gamma} = E_{e} = 52.8 \text{ MeV}$$

$$\theta_{e\gamma} = 180^{\circ}$$

$$t_{e\gamma} = 0 \text{ s}$$

н

BACKGROUNDS

 $E_{\gamma} < 52.8 \text{ MeV}$ $E_e < 52.8 \text{ MeV}$ $\theta_{e\gamma} < 180^{\circ}$ $t_{e\gamma} = 0 \text{ s}$

 $e^{+} \mu^{+} \gamma$

 $e^+ \mu^+ \mu^+ \mu^- \mu^-$

$$\begin{split} E_{\gamma} &< 52.8 \text{ MeV} \\ E_{e} &< 52.8 \text{ MeV} \\ \theta_{e\gamma} &< 180^{\circ} \\ t_{e\gamma} &= \text{flat} \end{split}$$

Radiative muon decay (RMD)

• Accidental background

—> Michel decay + Gamma from RMD, AIF or bremsstrahlung

 $N_{acc} \propto R_{\mu^+}^2 \times \Delta E_{\gamma}^2 \times \Delta p_{e^+} \times \Delta \Theta_{e^+\gamma}^2 \times \Delta t_{e^+\gamma} \times T_{2^-} \longrightarrow Accidental bkg dominant at high rates H. Benmansour H. Benmansour$

Resolutions	MEG	MEG II	
$p_e \; (\text{keV})$	306	130	
$\vartheta_e(\text{mrad})$	9.4	5.3	
$\varphi_e(\mathrm{mrad})$	8.7	4.8	
e^+ efficiency (%)	40	88	

x2 resolution compared to MEG

Low-mass single volume detector with high granularity -> 9 concentric layers of 192 drift cells defined by 11904 wires

3

Beryllium Anomaly investigation

—> potential light boson X17 (17 MeV)

—> main background: Internal Pair Conversion (IPC), e+/e- pair creation by the excited nucleus

- Objective: performing the same measurement with a different setup and improved detector resolutions
- Three key elements:

—> Cockroft-Walton accelerator which produces 1.05MeV protons with 1uA current

—> lithium target optimized for the X17 search, 5um LiF on 25um copper substrate with copper arm (heat dissipation)

—> the MEG-II drift chamber with reduced magnetic field allows to detect the e+/e- pair (momentum ~ 9MeV)

- Two observables: invariant mass and opening angles
- Data were taken for 2 weeks in February
- Analysis currently being carried out: main challenge is to reconstruct both the positron and the electron track
- e+ tracking ready from MEG search but e- tracking needs to be achieved

<u>e+/e- pair tracking in the MEG-II drift chamber</u>

Track finder efficiency

Simulated	2k XBoson positrons —> condition: events with 1+ track	2k XBoson electrons —> condition: events with 1+ track	2k XBoson pairs —> condition: 2+ tracks/event (1+ e+, 1+ e-)	2K IPC pairs —> condition: 2+ tracks/event (1+ e+, 1+ e-)
Track finder MC	920 e+ 17 e-	44 e+ 670 e-	469	208
Track finder PR	223 e+ 6 e-	59 e+ 110 e-	43	16
Ratio PR/MC	24 %	16 %	9 %	8 %

- lots of « false e+ » but very few « false e- » —> very few « false pairs »
- reconstruction for e- 2x worse than for e+ —> actual loss in efficiency
- an idea could be to try fitting all tracks with both e+ and e- assumptions and keep the best fit
- how good are the reconstructed pairs?

15-03-2022

H. Benmansour

Angular correlation

—> For each event with 1+ positron and 1+ electron, best tracks chosen by minimizing chi2/dof (XBoson simulation - 60k events)

—> Angular correlation was calculated with the best positron track and the best electron track

simulation level

angular

reconstructed level

angular

H. Benmansour

Number of hits per track

—> in average 4 more hits from the electron track: Kalman needs more e- hits to reconstruct? asymmetry of the TC? ¹⁵⁻⁰³⁻²⁰²²

Hits study

—> hits distributions for reconstructed pairs
—> peaks at 10 hits
—> in average, 17 hits per track, twice less

than for MEG

—> second peak around **25 hits**

Number of hits per e- track

H. Benmansour

H. Benmansour

900

800

700

600

500

400

300

200

100

01 0

Impact of hits on angular correlation tail

angular Entries Mean Std Dev

angular

12693

106.7

40.3

200

hits

angular

100

150

50

nhits>15

hits

15-03-2022

13

15-03-2022

H. Benmansour

Study of badly reconstructed pairs

—> could the badly reconstructed events be due to the unread section of the CDCH?

Study of badly reconstructed pairs

hits

50

Entries

Std Dev

Mean

150

simphis2

60

4873

66.23

45.68

9746

16.09

10.43

Entries

Mean

Std Dev

sectione di Pisa —> cut on the tail events from the angular correlation distribution: **angle < 100°**

—> badly reconstructed events correspond mainly to pairs emitted // to x axis

H. Benmansour

Study of badly reconstructed pairs

-> cut on the tail events from the angular correlation distribution: **angle > 120°**

15-03-2022

Study of badly reconstructed pairs:

interpretation

--> not reconstructed events correspond mainly to pairs emitted // to x axis directed towards the unread section (low number of hits)

--> well reconstructed events correspond mainly to pairs emitted // to y axis

<u>Study of badly reconstructed pairs:</u> <u>interpretation</u>

--> badly reconstructed events correspond mainly to pairs emitted // to x axis

--> well reconstructed events correspond mainly to pairs emitted // to y axis

—> badly reconstructed seem to be the one emitted // to the x axis
 —> many of these must not be reconstructed at all

<u>Conclusion</u>

- —> reconstruction efficiency for e+ **x2 lower** than MEG e+
- —> reconstruction efficiency for e- **x2 lower** than e+
- —> pair reconstruction efficiency 8-10%
- --> a significant fraction of the pairs are badly reconstructed: they correspond to pairs emitted -// to the x axis, they lead to tracks with low number of hits

Next steps

- --> try fitting each track with both e+ and e- assumption
- —> confirm interpretation of badly reconstructed events by cutting on phi at the sim level