

DTT Magnet Integration

Giuseppe Ramogida DTT S.c.a r.l. (ENEA) on behalf of DTT Team

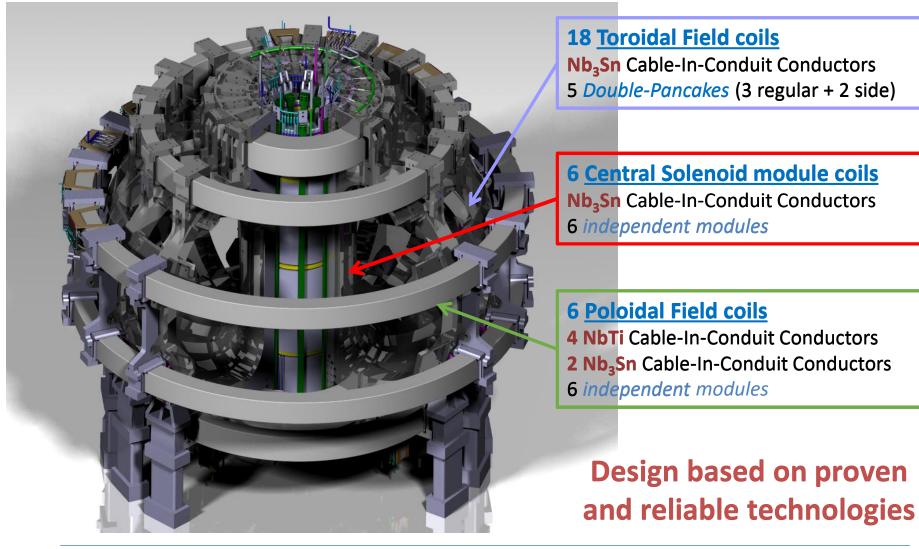
IOD - Industrial Opportunity Days 2022 June 9-10, 2022

INAF - Osservatorio Astronomico di Capodimonte - Napoli

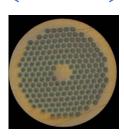
DTT Consortium (DTT S.C.a r.l. Via E. Fermi 45 I-00044 Frascati (Roma) Italy)

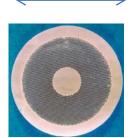
Outline

- DTT magnet system overview
- o Main subsystems/procurements:
 - Superconducting and Copper strands
 - Coils conductors
 - Toroidal Field Coils (Winding pack, Casing, Integration, Testing)
 - Poloidal Field coils
 - Central solenoid coils
 - Superconducting feeders and current leads
 - Diagnostics
 - ENEA Cold Test Facility
 - Cryoplant


DTT magnet system requirements & constraints

- High magnetic fields -> use of Nb3Sn
- High flexibility for plasma shaping -> independent PF coils
- Confinement field 6 T @ plasma center -> High current TFCs
- Ripple < 0.5% -> 18 TF Coils
- Pulse length ~ 100 s -> High current density in CS modules
- Schedule & budget constraints -> Use of mature technologies


DTT magnet system at a glance



Superconducting and copper strands procurements outlook

- Tender negotiated procedure after market survey to set-up a list of qualified economic operators to be invited, 4 lots, most economically advantageous tender (MEAT) criterion adopted
 0.82 mm
 - Nb₃Sn (chromium coated) for TF: Hi-Grade performance at 4.2K: Ic (4.2K, 12T, 0.0% applied strain) > 285 A hysteresis losses < 1000 mJ/cm³
 - Nb₃Sn (chromium coated) for CS & PF1/6: Hi-Grade performance at 4.2K: Ic (4.2K, 12T, 0.0% applied strain(*)) > 260 A hysteresis losses nts < 400 mJ/cm³
 - NbTi (nichel coated) for PF2/3/4/5: Required Performance at 4.2K: Ic (4.2K, 5T) ≥ 500 A hysteresis losses < 100 mJ/cm^3
 - 4. Cu (chromium coated) for TF, CS & PF1/6 and Ni (nichel coated) for PF2/3/4/5: 0.82 \pm 0.005 mm, Cr/Ni coating = 2 \pm 1 μm RRR: > 300
- Nb3Sn strands for TF conductors (KAT) -> Deliveries completed on schedule (55 tons)
- Nb3Sn strands for PF/CS conductors (LUVATA) -> On going, 9 tons expected in 2022
- NbTi strands for PF conductors (FURUKAWA) -> Deliveries on schedule (14 tons), last 2 deliveries expected in 2022 (13.5 tons)
- Cu(Cr) strands for Nb3Sn conductors (LUVATA) -> On going, 9 tons delivered, 8 tons exp. in 2022
- Cu(Ni) strands for NbTi conductors (LUVATA) -> On going, 4 tons delivered, 6 tons exp. in 2022

0.82 mm

Conductors procurement outlook

Superconducting conductors (ICAS), Phase I (qualification of design) on going

- Dummy (full Cu) conductors manufactured
- TF superdummy (first) delivered to TF integrator
- TF, PF2, PF3 samples ready, in preparation for testing in Sultan
- Sultan test results for TF conductors expected at end of July, then choice of design option and start of TF Phase II (Production) exp. in September
- Production rate: 1 WP set / 40 working days

All conductors and termination design options will be tested in Sultan in operative conditions for the design number of cycles

- TF ULs:
 - 54 rDP + 36 sDP + 8 spare
- PF ULs:

18 DP-PF1/6 + 1spare + 16 DP-PF2/5 + 1 spare + 14 DP-PF3/4 + 1 spare

• CS - ULs:

```
6 HF + 1 spare + 6 MF + 1 spare + 6 LF + 1 spare (tbc)
```


TF conductor features

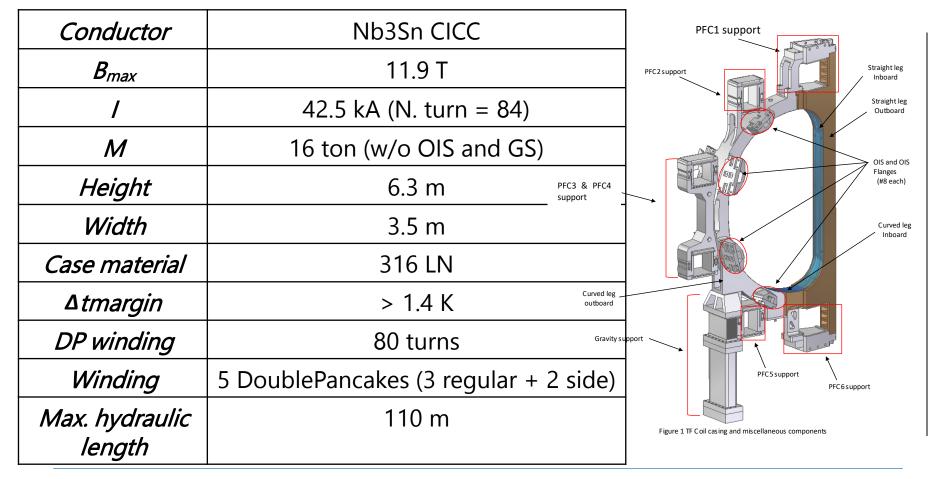
Conductors manufacturing will consist in:

- Cabling
- Jacketing & insertion
- Spooling
- Testing
- Shipping to coil manufacturers

Key issues:

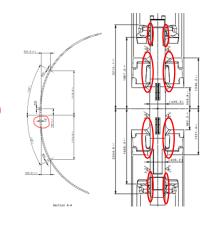
- 316 LN jacket (samples and dummies to be provided in advance for winding test)
- 100% welds testing
- He leak testing (pressure, flow)
- Jacketing line ~ 880 m (for CS & PF)
 - 29.5mm 23.3mm

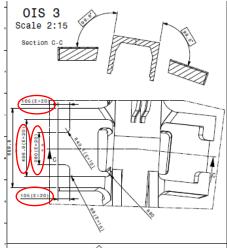
- Unit length (UL): 240 m (regular), 170 m (lateral)
- Total # of ULs: 54 (regular) + 36 (lateral) + 8 spare
- VF: 26.4%
- Nb3Sn strands: 504
- Cu segregated strands: 144
- Cabling pattern:

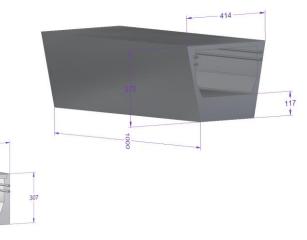

[(1Cu+2Nb3Sn)+(1Cu+2Nb3Sn)+3Nb3Sn]*3*4*6

Wrapping: 0.05mm thick, overlap 30%

TF coils procurement outlook


- TF casings (SIMIC) -> On going, Materials procurement for mock-up started (includes manufacture of 18 sets of TF coil casing components, mock-ups, superbolts, supports and transport frames)
- TF WPs and integration (ASG) -> On going, winding line set-up and termination/joint design started

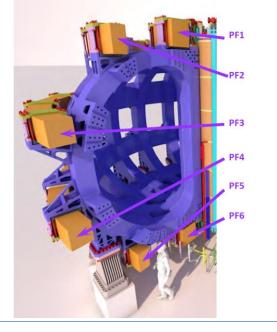


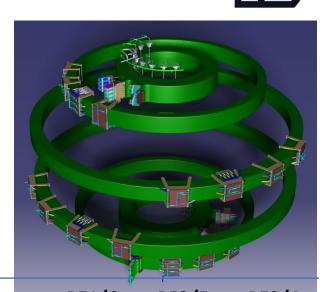

TF coil casings procurement

- Casing mass approx. ~ 10 tons
- Max thickness approx. 90 mm
- Support structures for PF included
- Outer Intercoil structures included
- Casing material 316LN
- 100% welds control
- Dimensional controls with laser track
- Channels for cooling machined inside and sealed
- Jigs for composition and trasnport
- Mock-ups for coil integration included
- Production rate; 1 casing/month

Qualification activities for TF Coils

Activities for WP qualification


- Heat treatment (up to 650°C for ~ 2 weeks < 200 ppm O2 and other impurities)
- Insulation after heat treatment
- Internal joint (<2nOhm) to be tested in cryogenic conditions
- Vacuum pressure impregnation (VPI)
- Shear strenght test of insulation
- High voltage DC tests in vacuum (Paschen proof) -> Vacuum chamber


Activities for TF integration

- Welding process qualification record -> chamfer design
- WP insertion and embedding qualification
- Machining qualification and measurement (general medium tolerance class specified unless otherwise stated)
- Piping layout and welding process
- High voltage DC tests in vacuum (Paschen proof) for piping

PF coils procurement outlook

- 1 (inner) Nb3Sn + 2 (outer) NbTi pairs of up-down symmetric coils
- Technical specifications in review, definitive drawings in preparation (S-DRM in 2022Q3)
- Independent verification analyses on going (2022Q2)
- Study of 9 m diameter PF3 & PF4 transportation on DTT site started
- Tender to be launched in 2022Q3

	PF1/6	PF2/5	PF3/4
CICC	Nb3Sn	NbTi	NbTi
lopmax [kA]	28.3	27.1	28.6
Bmax [T]	9.1	4.2	5.3
Turns (radial x vertical)	20 x 18	10 x 16	14 x 14
Dtmargin [K]	1.8	1.9	1.7
Mass [tons]	15	16	28

DTT Technical Coordination Meeting 44

PF coils winding features

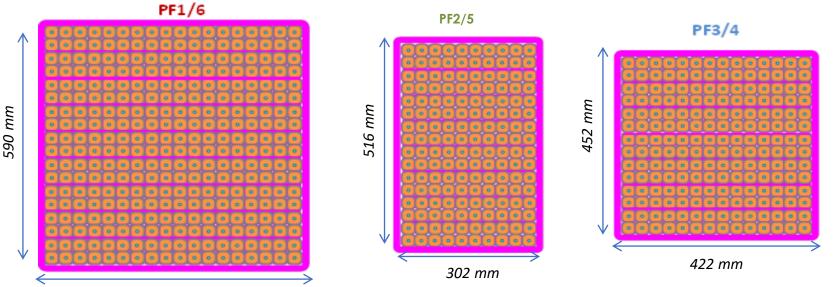
PF1/PF6:

- ~ 590 mm Coil height
- Inner diameter ~ 2,3 m Inner diameter ~ 5,8 m
- Outer diameter ~ 3,4 m Outer diameter
- Mass

- **Double pancakes** 9
- ~ 20 tons
- Mass

PF2/PF5:

٠

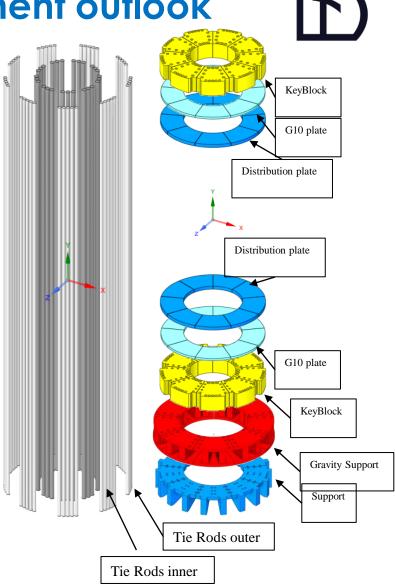

• Double pancakes 8

Coil height ~ 516 mm

PF3/PF4:

- Coil height ~ 452 mm
- Inner diameter ~ 8,2 m
- ~ 6,4 m Outer diameter ~ 9 m
- ~ 20 tons Mass

- ~ 33 tons
- Double pancakes 7



PF6 will be the first component to be tested and delivered

Central Solenoid procurement outlook

- Stack of 6 independently fed modules, tied by a precompressed structure
- Minimum flux required 16 Wb (from max lop to zero)
- Grading design
- Discussion on CS option (pancake vs layer wound with glass-only Insulation before heat treatment) design in C-DRM (2022Q2)
- Discussion on the pre-load (60 MN) applied at RT by tie-rods vs tie-plates
- CS Engineering and tender preparation to be completed by the end of 2022
- E-DRM in 2022Q4
- S-DRM in 2023Q1
- HV DC tests in vacuum (Paschen proof)
- Tight tolerance on current line diameter and center axis
- Assembly only after testing of each module in cryogenic conditions and full current

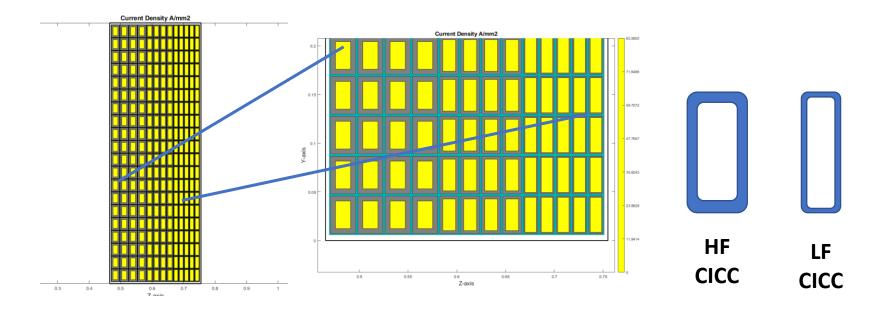

Central Solenoid features

Requirements

- Stack of 6 equals, independently fed modules, tied by a precompressed structure
- Minimum flux required 16 Wb (from max lop to 0)
- Rmax < 824 mm (innermost TF radius)
- Rmin allowing a possible future insert of additional HTS module

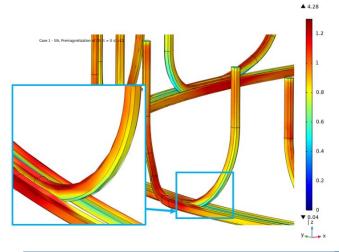
Design choices (tbc)

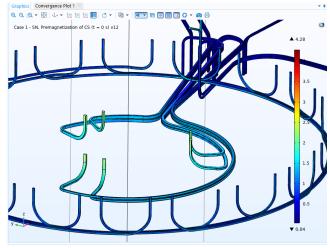
- Nb3Sn Cable-In-Conduit Conductors
- CICC lop > 31.3 kA (35 kA with current strands)
- Bpeak: 13.2 T
- Rmin / Rmax: 443 mm / 755 mm
- ΔTmargin > 1.0 K
- Graded design to increase current density
- Module height ~ 0,9 m
- Module inner diameter ~ 0,9 m
- Module outer diameter ~ 1,5 m
- Module Mass ~ 7 tons
- Cycling loading conditions (> 25000 cycles)

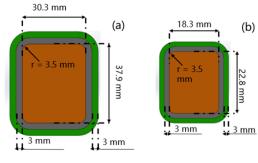


1,5 m

CS alternative design options

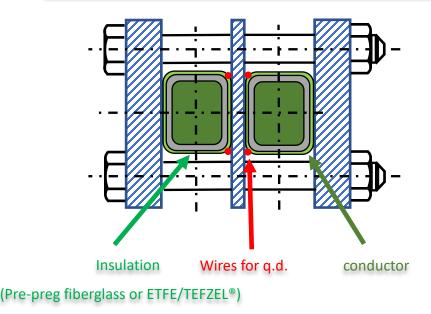



- External panel review triggered analysis of solutions based on Wind, React and Transfer approach, to allow Kapton in inter-turn insulation -> too much R&D required
- Alternative, non-standard hybrid pancake solution with I_{op} = 35.0 kA is being studied, that would allow a flux of 16.0 Weber, but reduce the risks on insulation -> some issues on CICC manufacturing to be clarified
- Some R&D on insulation materials and joints to be carried out in 2022


Superconducting Feeders overview

- Feeders routing updated to avoid high field regions
- Thermohydraulic and 3D EM analyses performed
- Feeders design completed
- Design of supports and clamps started (2022Q1)
- C-DRM in 2022Q3
- Main components:
 - NbTi conductors (ad-hoc procurement)
 - Clamps, supports, joints (assembly tender)
 - Current Leads (ad-hoc tender)
 - Coil Terminal boxes to be defined depending on current leads design

Super Conducting Feeders cable layout


Jacket thickness to be confirmed through 3D mechanical analyses

MAIN PARAMETERS OF THE DTT FEEDER DESIGN

Parameter	CS	PF	TF /jumpers		
# SC strands	1350	162			
# pure Cu strands	0	324			
Cabling pattern	3 x 3 x 5 x 5 x 6	(1 SC + 2 Cu) x 3 x 3 x 3 x 6			
Strand diameter	0.82 mm	0.82 mm			
Void fraction (%)	35.4		34.9		
Twist pitch sequence	35/	80/125/190/290			
Jacket thickness	3 mm	3 mm			
Insulation thickness	3 mm	3 mm			
Maximum field	5.5 T	3.1 T			
Maximum transport current	32 kA	32 kA	42.5 kA		
Operating temperature		4.5 K			
Nominal mas flow rate		5 g/s			

$- \bigoplus \& \bigcirc$ feeders clamped together to counter the *e.m.* force

- Glass-Kapton-Glass tape and epoxy resin for insulation
- Voltage taps for quench detection attached along and wound around the conductor to cancel the inductive voltage

Magnet signals and diagnostics outlook

About 2000 HV signals wires foreseen for TFC, PFC, CSC in total

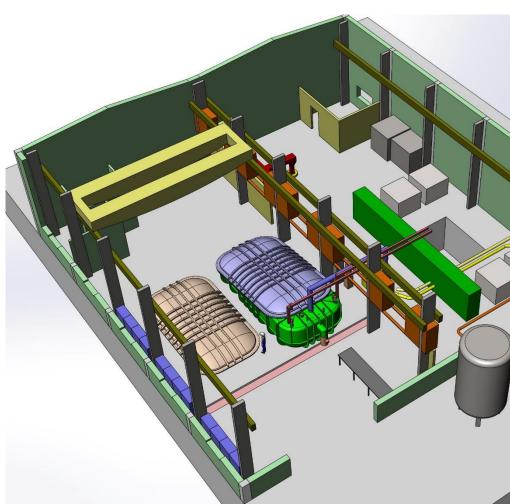
Under analysis:

- HV cryostat feedthrough
- Signals grouping and conditioning
- Set of signals to be used in CTF
- Study of HV wires insulation in cryostat

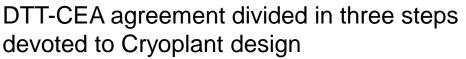
HV wires included in coil procurements (up to cryostat) and in assembly tender (out of cryostat)

ltem #	Coil/Syste m/Compon ent	N°	Flowmeter- TOLL [0.01 g/s]	Thermometer (3-300 K) - TOLL [0.01 K]	Voltage Tap(0-3kV) - TOLL [1 mV]	Cowound	Pressure (0-10 bar) - TOLL [0.1 bar]	Strain gauge	Notes
1	TF-Coil	18	36	36	36		18		
2	TF-Case	18		54				126*	*2xN(inner- leg)+x3N(outer- leg)+2*N(OIS)
3	TF-Cooling channels	144		19*					*1 in + 18 out (cooling channels)
4	CS- Modules	6	12	24*	48	168	12		*1 in + 3 out per module; ** 1 per module + 1 cowound
5	CS-Tie Plates	18						36	
6	CS-Support	9						18	
7	PF-Coil	6	12	12	48	192	12	54**	* 1 per DP + 1 cowound; ** 9 per coil
8	PF-Support	54						108*	*2 per support
9	Feeders	24	24	48	384	192			
10	Currents Leads HTS	6	6	30	60				
11	Current Leads Cu	24	24	120	24				
TOTA LS			114	343	600	552	42	342	
			4wire	4wire	HV3	HV4	4wire	4wire	
	4wire HV3	cavi 841 600	passanti 3364 1800	cowound passanti	TOTAL 552 2208	PF 192 768	CS 168 672	feeders 192 768	
	HV4	552 1993	2208 7372	VT passanti	480 1440	48 144	48 144	384 1152	

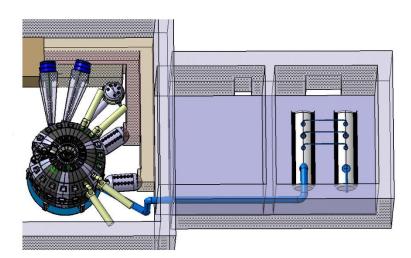
ENEA Frascati Cold Test Facility

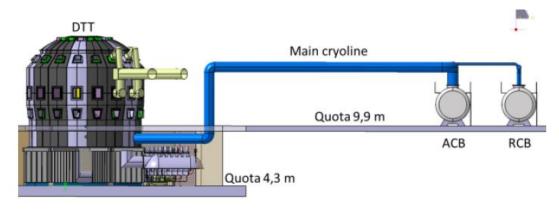


All Nb3Sn coils will be cryogenc 4.5K tested in ENEA CTF


- Procurement by ENEA in progress
- Test rate: ~ 2 month per TFC including coil preparation, cooldown (1 week), testing (1 week), warm-up, coil release

Key issues:


- High voltage DC tests in vacuum at Cryogenic 4.5 K, 6 bar, nominal current
- Quench test
- Insulation resistance test
- Joint resistance test (< 2 nOhm)



Cryoplant subsystem overview

- First step aimed at identifying by the end of 2022 the preliminary functional design suitable is close to start
- This preliminary design will be used as reference for launching a competitive dialogue with manufacturers in 2023
- Main components:
 - Cold boxes (RCB, ACB)
 - Cryolines
 - Cryogenic valve boxes
 - Coil terminal boxes
 - Warm compression station
 - Helium storage tanks
 - Quench recovery line
 - Nitrogen storage tanks

DTT Magnet Integration

G. Ramogida

Making DTT together

Thank you for attention and patience

DTT Consortium (DTT S.C.a r.l. Via E. Fermi 45 I-00044 Frascati (Roma) Italy)

