Estimation of detection probabilities of Gamma-Ray Burst and Gravitational Waves multimessenger events produced by disruptive binary mergers

Tobia Matcovich

Supervisors: Dr. M. Bawaj Dr. S. Germani Dr. S. Cutini

Third Gravi-Gamma Workshop 06/10/2022

Presentation outline

Introduction : context and objectives

GW150914 First detected GW event

GW170817 + **GRB170817A** First multimessenger detected event

Only few events, we need to study these events in preparation for future detections

Future detections (LIGO-Virgo-Kagra interferometers)

Future instruments: Einstein Telescope, LISA

- Models study
- Gravitational data analysis
- Estimate the electromagnetic counterpart of the coalescence
 - Estimation of the events **detectability**

Compact binary objects coalescence (CBC)

NS-BH events: merging and EM emission

• Short Gamma-Ray Burst: Prompt and Afterglow component

NS-BH events: merging and EM emission

Short Gamma-Ray Burst: Prompt and Afterglow component

NS-BH events: merging and EM emission

Detected events

Simulations + Sentitivity

Expected event for the future

Instrument	NS-BH
AdLIGO	1.2-9.3
A+	3.2-26
ET	2.4×10^{3} - 2.2×10^{4}

Baibhav et al. 2019

Detected events: GW200105 e GW200115

Fermi-LAT e CTA telescopes

• Fermi-LAT (Large Area Telescope)

 $\gamma\text{-ray}$ wide field telescope :20 MeV-300 GeV

https://www-glast.stanford.edu/instrument.html

- CTA (Cherenkov Telescope Array)
- It uses Cherenkov light generated by EM shower
- These showers are very rare (1 photon $/m^2 \cdot$ yr for bright sources, 1

photon/ m^2 · century for weak sources)

More then 60 telescopes, north e south hemisphere, differents sizes

https://www.cta-observatory.org/

Range: 20 GeV- 5 TeV

In order to estimate the events detectability we followed these steps:

- 1. Study and application of **models** for the **remnant mass** and **jet** formation
- 2. Modelling the **afterglow spectrum**
- 3. Comparison of spectra obtained and **sensitivities** of Fermi-LAT and CTA instruments
- 4. Estimation of **event detectability** as a function of coalescence parameters

Parameter space evaluation: M_{rem} model

Through the models extracted from the simulations, we can study the parameter space that allows the creation of an observable EM counterpart

Faucart 2018 model

Parameter space evaluation: jet energy model

This represents the main link between the gravitational part and the EM part

Parameter space evaluation: jet energy model

Plots of the trend of the kinetic energy of the jet Ek as a function of parameters:

Afterglow spectrum

To obtain the expected spectra, we used a newly formulated model for synchrotron and

synchrotron-self-Compton (SSC) (Joshi e Razzaque 2021)

	Spectrums	

To estimate the probability of detection, we initially used the best parameter estimates of the **GW200115** event to obtain the expected EM spectrum

$$M_{BH} = 5.7 \ M_{\odot}$$
, $M_{NS} = 1.5 \ M_{\odot}$, $a_{BH} = 0.33$, $d_L = 300 \ Mpc$, $\lambda = 400$

The jet cannot be created because of

the threshold imposed on Mrem

Result: event GW200115 does not have the necessary characteristics to create a jet and thus an EM counterpart if we impotize the reasonable value $\lambda = 400$

Afterglow spectrum vs Fermi-LAT and CTA Sensitivity ($a_{BH} = 0.33$, time=1000s, $\theta_{obs} = 0.0$ deg) Fermi-LAT CTA SOUTH 100s CTA NORTH 100s Total $\lambda = 100$ Total $\lambda = 600$ Total $\lambda = 1000$ *Flux* [erg/cm^2/s] Total. λ = 1500 Depends on **spin** and λ : 10-8 Total, λ = 2000 if we increase λ the jet is created but the 10-10 flux intensity is too low 10-1 10-12 1011 1013 107 10⁹ 10¹⁵ E [eV] Spectrums

Spectrums

We varied one parameter at a time to study how the probability of detection changes

- Variation of observation angle θ_{obs}
- Variation in the mass of the black hole M_{BH}
- Variation of the distance **D**_L

We varied one parameter at a time to study how the probability of detection changes

- Variation of observation angle θ_{obs}
- Variation in the mass of the black hole M_{BH}
- Variation of the distance **D**_L

	Sneetrums	
	~peeer units	

We varied one parameter at a time to study how the probability of detection changes

- Variation of observation angle θ_{obs}
- Variation in the mass of the black hole M_{BH}
- Variation of the distance **D**_L

	Smaat	
	SDecurums	

- Not all GRBs produced can be detected
- If the **GW200115** event had had a higher spin and/or λ it would have been possible to see the GRB with Fermi-LAT
- The **parameters** that most influence detectability are a_BH and Q while λ introduces small differences
- Synchrotron emission shows high detectability and bodes well for the future
- In contrast, the detectability for the **SSC** component with **CTA is very low**

It depends very much on the parameters and the models themselves: more in-depth analyses are needed in the future

16

Thanks for your attention

Tobia Matcovich

Supervisors: Dr. M. Bawaj Dr. S. Germani Dr. S. Cutini

Third Gravi-Gamma Workshop 06/10/2022

Backup Slides

Formazione e inspiral

Compact Binary Coalescence					4)
----------------------------	--	--	--	--	---	---

Rate di formazione

Siamo interessati agli oggetti che si incontrerrano in un tempo ~ minore della vita dell'Universo

R. Voss e T. M. Tauris 2003

Rate di detection

Utilizzando le simulazioni per la formazione e le sensibilità si può stimare il numero di eventi che ci aspettiamo di rivelare

Parametro fondamentale: **chirp mass** $\mathcal{M}_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$

Detector	BNS	NSBH	BBH
O2	0.028 - 0.91	012-11	27 - 40
O3	0.11-3.4	0.46 - 3.9	94 - $1.5 imes 10^2$
AdLIGO	0.27-8.6	1.2-9.3	$2.2 imes10^2$ - $3.6 imes10^2$
A+	0.88 - 28	3.2-26	$5.6 imes10^2$ - $9.7 imes10^2$
A++	2.3 - 71	8.1-63	$1.3 imes10^3$ - $2.4 imes10^3$
Voyager	$32 - 9.4 imes 10^2$	$1.0 \times 10^2 - 7.8 \times 10^2$	$9.7 imes10^3$ - $2.7 imes10^4$
ET-B	$1.1 imes10^3$ - $2.7 imes10^4$	$2.4 imes10^3$ - $2.2 imes10^4$	$4.9 imes10^4$ - $2.7 imes10^5$
CE	$1.6 imes 10^4$ - $2.7 imes 10^5$	$1.6 imes 10^4$ - $1.4 imes 10^5$	$8.6 imes10^4$ - $5.4 imes10^5$
Noiseless	$2.8 imes10^4$ - $4.5 imes10^5$	$2.0 imes10^4$ - $1.8 imes10^5$	$9.2 imes10^4$ - $5.7 imes10^5$

Sensibilità degli strumenti attuali e futuri

Ringdown e formazione del disco

É la fase più complicata da analizzare, sia teoricamente che strumentalemente

- Formazione del **getto**
- Campi magnetici

Descrizione completa del segnale chirp

Per descrivere tutto il segnale chirp abbiamo bisogno di più approcci

- **Teoria Post-Newtoniana**: ci consente di fare un espansione attorno al parametro $(v/c)^2$
- Relatività numerica: quando falliscono altri metodi, il problema è il tempo computazionale
- **BH perturbation theory:** al primo ordire è costituita da una sovrapposizione di sinusoidi esponenzialmente decrescenti

- Approccio Effective One-Body (**EOB**)

Costruzione dei template

Approccio fenomenologico Inspiral Merger Ringdown (**IMRPhenom**)

Gamma-Ray Burst

Modello a Jet per il GRB : cono formato da più gusci che si espandono verso l'esterno

Processi radiativi: Synchron Self Compton (SSC)

In presenza di forti campi magnetici e tante particelle relativistiche (elettroni) i processi di Sincrotrone e Compton Inverso avvengono insieme

Synchrotron Self Compton (SSC)

I fotoni prodotti per sincrotrone interagiscono con gli elettroni guadagnando energia

Otteniamo uno spettro caratteristico con due picchi raggiungendo **energie molto** elevate (GeV - TeV)

	Gamma-Ray Burst		
--	-----------------	--	--

Afterglow spectrum

$$F_{\nu,\text{slow}} = f_{\nu,max} \begin{cases} \left(\frac{\nu_a}{\nu_m}\right)^{1/3} \left(\frac{\nu}{\nu_a}\right)^2, & \nu < \nu_a \\ \left(\frac{\nu}{\nu_m}\right)^{1/3}, & \nu_a < \nu < \nu_m \\ \left(\frac{\nu}{\nu_m}\right)^{-(p-1)/2}, & \nu_m < \nu < \nu_c \\ \left(\frac{\nu_c}{\nu_m}\right)^{-(p-1)/2} \left(\frac{\nu}{\nu_c}\right)^{-p/2}, & \nu > \nu_c \end{cases}$$

n_0	p	ϵ_e	ϵ_B	$Y = L_{SSC}/L_{sy}$
$10^{-5} cm^{-3}$	2.3	0.2	0.02	$0.93 \cdot (t/10^2)^{-0.09}$

$$h\nu_{a,\text{slow}} = 4.4 \times 10^{-4} \frac{(p+2)^{3/5}(p-1)^{8/5}}{(3p+2)^{3/5}(p-2)} (1+z)^{-1} \epsilon_{B,-1}^{1/5} \epsilon_{e,-1}^{-1} n_0^{3/5} E_{55}^{1/5} \text{ eV} \qquad h\nu_{a,\text{ssc,slow}} = 0.7 \left[\frac{(p+2)^{3/5}(p-1)^{-2/5}(p-2)}{(3p+2)^{3/5}} \right] (1+z)^{-1/4} \epsilon_{B,-1}^{1/5} \epsilon_{e,-1} n_0^{7/20} E_{55}^{9/20} t_2^{-3/4} \text{ MeV}$$

$$h\nu_{c} = 1.0 (1+z)^{-1/2} \epsilon_{B,-1}^{-3/2} n_0^{-1} E_{55}^{-1/2} t_2^{-1/2} (1+Y)^{-2} \text{ eV} \qquad h\nu_{c,\text{ssc}} = 0.04 (1+z)^{-3/4} \epsilon_{B,-1}^{-7/2} n_0^{-9/4} E_{55}^{-5/4} t_2^{-1/4} (1+Y)^{-4} \text{ MeV}$$

$$h\nu_{m} = 41.3 \left(\frac{p-2}{p-1} \right)^2 (1+z)^{1/2} \epsilon_{B,-1}^{1/2} \epsilon_{e,-1}^{2} E_{55}^{1/2} t_2^{-3/2} \text{ keV} \qquad h\nu_{m,\text{ssc}} = 66.5 \left(\frac{p-2}{p-1} \right)^4 (1+z)^{5/4} \epsilon_{B,-1}^{1/2} n_0^{-1/4} E_{55}^{3/4} t_2^{-9/4} \text{ TeV}$$

$$f_{\nu,\text{max}} = 377.1 (1+z)^{-1} \epsilon_{B,-1}^{1/2} n_0^{1/2} E_{55} d_{28}^{-2} \text{ Jy}.$$

$$f_{\nu,\text{max},\text{ssc}} = 7.7 \times 10^{-4} (1+z)^{-5/4} \epsilon_{B,-1}^{1/2} n_0^{5/4} E_{55}^{5/4} t_2^{1/4} d_{28}^{-2} \text{ Jy}.$$

	NDECLEIIINS		

Inferenza Bayesiana con la libreria Bilby

L'obiettivo principale dell'inferenza Bayesiana è quello di ottenere la **distribuzione di probabilità a posteriori** per una certa variabile θ una volta noti i valori misurati per quella variabile

$$p(\theta|d) \begin{bmatrix} \theta \text{ corrisponde al set di parametri (15 per un evento BBH)} \\ d \text{ corrisponde al flusso di dati degli interferometri} \end{bmatrix} Dobbiamo aggiungere il modello H con cui interpretare I dati Prior: informazioni a priori sui parametri Teorema di Bayes
$$p(\theta|d,H) = \frac{L(d|\theta,H)\pi(\theta,H)}{Z(d|H)}$$
Normalizzazione $Z(d|H) = \int p(\theta|d,H)\pi(\theta,H)d\theta$$$

In BILBY solitamente è integrata la funzione

log-likelihood gaussiana

$$\ln L(\mathbf{d}|\theta) = -\frac{1}{2} \sum_{k} \{ \frac{[d_k - \mu_k(\theta)]^2}{\sigma_k^2} + \ln(2\pi\sigma_k^2) \}$$

 μ é il template selezionato σ è il rumore del rivelatore

		Analisi	

- Download the data from Gravitational-Wave Candidate Event Database (GraceDB)
- Selection of fixed injected parameters
- Selection of the a **priori distribution** for every parameter we want to evaluate
- Selection of the **GW model** and **generate the wave**
- Likelihood function definition
- Select the **sampler** we want to use: Nestle, Dynesty, Pymultinest....
- **Run** the bayesian analysis

```
ifo list = bilby.gw.detector.InterferometerList([])
for det in detectors:
    logger.info("Downloading analysis data for ifo {}".format(det))
    ifo = bilby.gw.detector.get empty interferometer(det)
    data = TimeSeries.fetch open data(det, start time, end time)
    #data filt = data.bandpass(46,51).notch(60).notch(100).notch(120).notch(150).notch(509)
    ifo.strain data.set from gwpy timeseries(data)
    logger.info("Downloading psd data for ifo {}".format(det))
    psd data = TimeSeries.fetch open data(det, psd start time, psd end time)
    psd alpha = 2 * roll off / duration
    psd = psd data.psd(
        fftlength=duration, overlap=0, window=("tukey", psd alpha), method="median")
    ifo.power spectral density = bilby.qw.detector.PowerSpectralDensity(
        frequency array=psd.frequencies.value, psd array=psd.value
    ifo.maximum frequency = maximum frequency
    ifo.minimum frequency = minimum frequency
    ifo list.append(ifo)
```

injection_parameters = dict(mass_1=5.7,mass_2=1.5,a_1=0.5,a_2=0.02,tilt_1=0.0, tilt_2=0,phi_12=0,phi_jl=0.0,luminosity_distance=300.0,theta_jn=0.4,psi=2.659, phase=1.3,geocent_time=1263097407.7,ra=1.375,dec=-1.2108,

- Download the data from Gravitational-Wave Candidate Event Database (GraceDB)
- Selection of fixed injected parameters
- Selection of the a **priori distribution** for every parameter we want to evaluate
- Selection of the **GW model** and **generate the wave**
- Likelihood function definition
- Select the **sampler** we want to use: Nestle, Dynesty, Pymultinest....
- **Run** the bayesian analysis

priors = bilby.gw.prior.PriorDict()
print(priors)
for key in ["a_2","tilt_1","tilt_2","phi_12","phi_jl","psi","ra","dec","geocent_time","phase"]:
 priors[key] = injection_parameters[key]
print(priors)

#priors['chirp_mass'] = bilby.core.prior.Gaussian(3.198, 0.1, name='chirp_mass', unit='\$M_{{\\odot}\$')}
#priors['mass_ratio'] = bilby.prior.Uniform(name='mass_ratio', latex_label='\$q\$', minimum=0.05, maximum=1.0

#priors['mass_1'] = bilby.prior.Uniform(name='mass_1', minimum=3, maximum=8)
priors['mass_2'] = bilby.core.prior.Sine(name="theta_jn", minimum=0, maximum=1.0)
priors['theta_jn'] = bilby.core.prior.Uniform(name="theta_jn", minimum=0.5, maximum=1.0)
priors['a_1'] = bilby.core.prior.Uniform(name="theta_jn", minimum=0.5, maximum=3.5)
priors['luminosity_distance'] = bilby.core.prior.Uniform(name="theta_jn", minimum=0.5, maximum=3.50)

waveform_arguments = dict(
 waveform_approximant="IMRPhenomXPHM",
 reference_frequency=50,
 minimum_frequency=25.0,
 maximum_frequency=300,
 catch_waveform_errors =False

waveform_generator = bilby.gw.WaveformGenerator(

duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters, waveform_arguments=waveform_arguments,

- Download the data from Gravitational-Wave Candidate Event Database (GraceDB)
- Selection of fixed injected parameters
- Selection of the a **priori distribution** for every parameter we want to evaluate
- Selection of the **GW model** and **generate the wave**
- Likelihood function definition
- Select the **sampler** we want to use: Nestle, Dynesty, Pymultinest....
- **Run** the bayesian analysis

likelihood = bilby.gw.GravitationalWaveTransient(interferometers=ifo_list, waveform_generator=waveform_generator, time_marginalization=False, phase_marginalization=False, distance_marginalization=False, priors=priors)

result = bilby.run_sampler(
 likelihood=likelihood,
 priors=priors,
 sampler='nestle',
 npoints=50,
 conversion function=bilby.gw.conversion.generate all bbh parameters)

Spettro afterglow vs Fermi-LAT e CTA

(
		ALPHIS	