Probing modified gravity theories and cosmology using
gravitational-waves and associated electromagnetic counterparts
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Why do we want to test GR on cosmological scales?

e Alternative GR theories are possible
solutions to open issues in Standard
cosmological model, e.g. dark energy, Massive
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Why do we want to test GR on cosmological scales?
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Dispersion relation:

e GWs group velocity depends on the frequency.
e GWs modes arrive off-phased at the detector.
e GWs modes show a time delay w.r.t EM counterparts.

Horava gravity, massive gravity, scalar tensor theories with field derivative couplings

GW friction:
e GWsshow an additional energy leakage as they travel.

extra energy dissipation terms, e.g. a running Planck mass, 4+n dimensional gravity, scalar-tensor theories
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Why do we want to test GR on cosmological scales?
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Comoving distance

Dispersion relation:
e GWs group velocity depend on their frequency.
e GWs modes arrive off-phased at the detector.

e GWSs modes show a time delay w.r.t EM
counterparts.

GW friction:

e GWsshow an additional energy leakage as they
travel.
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Observables for GR modifications
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Observables for GR modifications
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e Modifications to GR have a stronger 10!
impact at higher redshift.
. . . 100
e GR modifications can be potentially
excluded using events at higher redshift. 10-1
=
e Some GR modifications introduce a strong 10-2 =
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Observables for GR modifications: Statistics
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[ Population parameters The Likelihood
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The selection bias
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Host galaxy

GW GRB

observation observation
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Observables for GR modifications: Statistics

[ Population parameters } } ‘

Very complicated analysis from a

\ / \ X\ p(A, anr, &l statistical point of view! A) -
Ll
To marginalize upon Take home messages:

GW . ! (53)
parameters e We take the luminosity distance
and phase studies of the GW.

e We take the measure of the time
BA, a delay of the GRB.
P (
Host galaxy @ e We take the redshift of the
hosting galaxy.

GRB

observatlon observation

SM+, Phys. Rev. D 102, 044009 (2020)
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Tests of GR in light of GW170817 and GW190521

e ABNSmerger at ~40 Mpc.

e Theidentified hosting galaxy, NGC4993, is located at
redshift ~0.01.

e GWa arrived 1.74s before its associated GRB.

GW190521 and e ABBH merger at ~3 Gpc (giving birth to an IMBH).
ZTF19ab

e ZTF19abanrhris an AGN flare associated with the
merger of the two BBHSs in an accretion disk.

e AGN redshift reported 0.438.

R. Abbott+, Phys. Rev. Lett..125, 101102 (2020)
M. J. Graham+, PhyS*Rev. Lett. 124, 251102 (2020)
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Tests of GR in light of GW170817 and GW190521
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SM+, Phys. Rev. D 102, 044009 (2020)

10
an m- 107 [eV?/c!]

GW damping term is not strongly constrained since
GW170817 is a closeby event.

Hubble constant strongly degenerate with the GW
damping term: terms degenerate for the GW/EM
luminosity distance.

Graviton mass is not correlated with Hubble
constant and damping term: GW phase is measured
very well.
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Tests of GR in light of GW170817 and GW190521
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Volfr.g) = fR 2
PN-order = 6

Volfa.a) % f'?
PN-order = 7

GW170817
Only

e The GW phase (PN orders) set a very tight
constraint on the GW dispersion and speed of
gravity.

e From the GW phase we can see that the speed of
gravity (at merger) is constrained at 10?°level.

e GW-GRB time delay can improve these
constraints only if we time it with a precision of
ten microseconds.
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Tests of GR in light of GW170817 and GW190521
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SM+ JCAP02(2021)043
GW170817 & e Including another GW event (GW190521), allows
GW190521 us to constrain conjointly GW damping and
1S T cosmology.
& = il | e GW190521 bring a good constraint for the GW
;g o i i damping since it is a far event.
_ B . N — e Unfortunately this event is poorly understood
*'P_ and its EM counterpart association is not
s Z_ confirmed.




Constraining GR with a population of Bright sirens

e Wegenerate BNSs uniformly distributed in the comoving volume.

e We assume a Universe where GWs have a small GW friction and dispersion term (massive
graviton of 1022 eV/c?).

e We assume that the GW-GRB prompt time-delay is uniform between -10 and 10 s.

e We consider detected only bright sirens merging below a GW luminosity distance 100 Mpc.
e We assume some measured quantities:

GW luminosity distance estimated with 10% uncertainty.

GW-GRB time delay estimated with 0.05 s uncertainty.

GW phase measured with a precision of 10%.
Redshift perfectly known from spectroscopy.

o O O O
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Constraining GR with a population of Bright sirens
— —0

e Simulation with 100 BNSs with observed EM
counterpart (redshift known).

e Weuse GW170817-like error budgets for
luminosity distance, GW phase and GW-GRB
time delay.

e Cosmological background parameters and
modifications of GR will be correlated!

Potentially, if you estimate the graviton mass
with a wrong HO value, you might get a bias.

PP D F P el B < e & D

Ho[km/s Mpc] am a;[Hz?]
SM+, Phys. Rev. D 102, 044009 (2020)
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Where are we now? Many BBHs
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e Many GW are detected with large sky 175 4 4+ 03 BBHSs IFAR>4 yr [
localizations and are very far (galaxy catalogs T8H o !
highly incomplete).

125 A

e |f BBHs are preferentially produced at a given g .
mass, we can exploit the mass-redshift K
relation to assign a redshift to the GW source £ 75 + —

[SM+, PRD 104 (2021)]. g S
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Where are we now? Many BBHs
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e If we assume an overdensity of BBHs
produced at 35 solar masses, some
“extreme” cosmologies can not fit the
overdensity of BBHs.
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Where are we now? Many BBHs
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Spectral sirens Dark sirens (galaxy catalogs)
0.05 0.06
— GW170817
H,=68+12-8 Broken Power Law ho-essss  INl ol s M
0.04 - km/s/Mec__ -~ Power Law + Peak 0.05 - kr(1)1/s/Mpc me K-band with GW170817
. == K-band
g == Truncated S Branih
P — GW170817 < 0.04 - SHOES
2 0.03 - Planck » H, = 67 +13 -12
| T km/s/Mpc H =67 +14 -13
£ 2
) SHOES § 0.03 ’ Kih/s/Mpc
x 0029 H =69+28+ R /
mo klg'l/S/MpC H0=68 +13-8 £ 0.02 - I H0=70 +12-8
3 km/s/Mpc 4 Y, km/s/Mpc
0.01 - H,=70+12-8 0.01 - 7
km/s/Mpc .j
£ d
0.00 ~— 0.00 - . . . T
25 50 75 100 125 150 175 200 20 40 60 80 100 120 140
Holkms~!Mpc~!] Holkms~!Mpc~!]

[LVK+, arXiv 2111.03604 (Accepted ApJ)]

Simone Mastrogiovanni - 3rd Gravi-Gamma workshop 5th Oct 2022



Where are we now? Many BBHs
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e Spectral sirens can also be used to to test - :
GW friction. o |
il
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Constraining GR with a population of Bright sirens

O

e Bright standard sirens are a fundamental tool to probe cosmology and modifications
of gravity.

e Itisimportant toinfer conjointly the Standard cosmological model and modifications
of gravity when using GW sources.

e 100 Bright sirens can potentially break the Hubble constant tension and provide
stringent constraints on the graviton mass (though BBHs are better).

e Future development to include possible selection biases on the EM side are needed.

e Spectral and dark siren are still a good alternative to probe cosmology.
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Thank you for the attention
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