in the context of EM Detectors and future prospects for multi-messenger science

A. Melandri - INAF/OAR

Third Gravi-Gamma Workshop: The multi-messenger view of the black hole life cycle

Volterra - 2022

Robotic Telescope

Robotic is not Remote A system that makes obs without being operated by humans Humans initiate the schedule at the beginning of the night Reliability of controlling system and software and are the key <u>Sets of predefined observational sequences</u> (triggered by alerts) This approach works very well for all transients sources!!

Robotic Telescope

Robotic is not Remote A system that makes obs without being operated by humans Humans initiate the schedule at the beginning of the night Reliability of controlling system and software and are the key <u>Sets of predefined observational sequences</u> (triggered by alerts) This approach works very well for all transients sources!!

Size < 0.5m (network of small apertures)

Size < 0.5m (network of small apertures)

0.5m < Size < 1m

Size < 0.5m (network of small apertures)

0.5m < Size < 1m

1m < Size < 3m

Size < 0.5m (network of small apertures)

0.5m < Size < 1m

1m < Size < 3m

Why not bigger?

- Largest robotic telescope !!
- Located on La Palma at the ORM; site approved
- 4.2 metre clear aperture, F/10.8
- Clamshell enclosure: efficient, no dome seeing

bd

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

- First on target, fast slewing
- Autonomous, robotic operation: unstaffed facility
- Intelligent scheduler with 'look-ahead capabilities'
- Will not replace LT: combined facility

- First on target, fast slewing
- Autonomous, robotic operation: unstaffed facility
- Intelligent scheduler with 'look-ahead capabilities'
- Will not replace LT: combined facility

Sensitive. Rapid. Efficient.

(repointing in ~ 30 s)

- First on target, fast slewing
- Autonomous, robotic operation: unstaffed facility
- Intelligent scheduler with 'look-ahead capabilities'
- Will not replace LT: combined facility

Sensitive. Rapid. Efficient.

(repointing in ~30 s)

Time Domain Astronomy

ility lities'

- First on target, fast slewing
- Autonomous, robotic operation: unstaffed facility
- Intelligent scheduler with 'look-ahead capabilities'
- Will not replace LT: combined facility

Sensitive. Rapid. Efficient.

(repointing in ~30 s)

Time Domain Astronomy

ility lities'

- Cassegrain focal station with 7 instrument ports
- FoV 14 (side) and 30 arcmins (straight through)
- Polarimetric capabilities
- Segmented (18 hexagons) primary mirror
 - Lightweight
 - Easier to fabricate and for operations and maintenance

Primary Mirror Segment Identification

INSTRUMENT	Wavelength	Field Of View	Notes	Science Cases
NR-SPRAT	3750 - 7500 Å	12 x 12 arcsec	IFU Spectrograph R=360	Type Ia SNe, Type II SNe, unknown transients (e.g. AT2018cow), strongly lensed SNe, GW counterparts, TDEs, exoplanets, solar system bodies
NR-IMAGER	3500 - 10000 Å	7.5 x 7.5 arcmin	<i>ugriz</i> filter set	Superluminous SNe, strongly lensed SNe, exoplanet transits
NR-MOPTOP	4000 - 8000 Å	5 x 5 arcmin	Polarimeter BVRI filter set	GRBs, blazars, unknown transients, CTA follow-up, GW counterparts
NR-RAPTOR	1.6 - 1.8 μm	3.2 x 2.6 arcmin	H band filter	Type la SNe, GW counterparts, faint red transients, dust forming novae

Courtesy of H. Jenmak

NRT Project Timeline

Milestones	2021	2022	2023	2024	2025	2026	20
Phase A - COMPLETE 2019 Site Approval							
Design and development							
Preliminary Design Review							
Critical Design Review							
Construction			_				
Mirror Fabrication							
Engineering first light (and mirror testing)							

Key instrument: SOXS-like intermediate resolution spectrograph

why now?

WAVELENGTHS 10' 10' 10 10 10 Radio waves Microwaves

why now?

why now?

Credits: Jeff Cooke/Swinburne University of Technology

S

Luminosity [erg

Peak

Ş **Survey Era**: capacity to follow-up these targets has been massively outpaced

(only 10-20% of transients get a spectroscopic classification)

Explore new parameter space for known transients

(e.g. pre-SN burst, shock breakout, rising emission or precursors, etc...)

(SLSNs, fast rising transients, etc...)

Multi-wavelengths Astrophysics

Ş

(from radio to gamma)

why now?

Discover new types of transients

Multi-messenger Astrophysics

(EM, neutrinos, GW)

No photon left behind

(first ever GW, BBH)

GW170817

(first counterpart EM, BNS)

(first ever GW, BBH)

GW170817

(first counterpart EM, BNS)

(Lighter BH ever observed?)

During O1 (~4 months): ٠ 3 confident BBHs 0

During O2 (~8 months): ٠

- 7 confident BBHs
- 1 confident BNS 0

During O3a (~6 months): ٠

- 1 consistent with BNS masses 0 (GW190425)
- 2 BH+lighter object 0 (GW190814, GW190426_152155)
- 36 consistent with BBHs 0

(Lighter BH ever observed?)

Spectroscopy is pivotal for classification and characterisation, to mainly exclude transient sources unrelated to GW signals !!

Spectroscopy is pivotal for classification and characterisation, to mainly exclude transient sources unrelated to GW signals !!

Observing run	Notroal	Source class			
	Network	BNS	NSBH	BBH	
04	HLVK	10^{+52}_{-10}	1^{+91}_{-1}	79 ⁺⁸⁹ -44	
100 M _I	oc 300 Mp	c 1 Gpc	100 Mpc	300 Mpc	1 Gpc

Colombo et al. 2022

VLT/X-shooter

10⁵ transients/night Information within 60s (brokers)

Observing run	Network	Source class		
		BNS	NSBH	BBH
04	HLVK	10^{+52}_{-10}	1^{+91}_{-1}	79_{-44}^{+89}

Colombo et al. 2022

VLT/X-shooter

10⁵ transients/night Information within 60s (brokers)

Observing run	Network	Source class			
		BNS	NSBH	BBH	
04	HLVK	10^{+52}_{-10}	1^{+91}_{-1}	79_{-44}^{+89}	

Colombo et al. 2022

10⁵ transients/night Information within 60s (brokers)

Observing run	Network	Source class			
		BNS	NSBH	BBH	
04	HLVK	10^{+52}_{-10}	1^{+91}_{-1}	79_{-44}^{+89}	

Colombo et al. 2022

NOT/NTE

- M_{Lim} from surveys is well matched for classification spectra with moderate-aperture telescopes
- For MMA: world-wide coordination is beneficial to avoid duplication (<u>Treasure Map</u>)
- Need to build large unbiased sample –> machine learning -> better understanding
- Critical to guide the usage of more limited follow-up with large-aperture facilities (present and future)

Discovery & Monitoring

- All sky monitor (dedicated wide field facilities)
- Daily cadence
- Science drivers: GW counterparts, GRBs, FRBs, SNe shock breakout, accretion, TDEs,

Multi-messenger

velengths

Multi-wav

Astrophysics (from radio to gamma)

Astrophysics (EM, neutrinos, GW)

Time Domain MM science desiderata

Rapid response

- Rapid slew (< 1hr)
- High Availability
- Science drivers: GW counterparts, GRBs, FRBs, stellar flares, space weather,
- transients, ...

High resolution

- Sub-ms timing
- High sensitivity
- MW for detailed follow-ups
- Science drivers: Strong Gravity, NS and AGN physics,

Summary

- Timely notification of alerts is critical for follow-up and classification (e.g. GCN and TNS)
- single)
- Spectra, spectra and even more spectra (current bottleneck for MMA) + fast imaging
- Coordination to avoid duplication (if possible): common science goals

(wishes for the future)

• Improvement of scientific understanding if the observing systems is efficient (collaborations over

• 'Survey Era' means we have to adapt/enhance our observing model (<u>robotic, dedicated time, ToO</u>)

