


Motivations

* In a supernova explosion, GWs are generated in the inner core of the
source, so that this messenger carries direct information of the inner
mechanism.

* Although the phenomenon 1s among of the most energetic in the universe,
the amplitude of the gravitational wave impinging on a detector on the
Earth 1s extremely faint.

* For a CCSN 1n the center of the Milky way, a rare event, we could expect
amplitudes of the metric tensor perturbations ranging between 10721 —
10723,

* To increase the detection probability we should increase the volume of the
universe to be explored and this can be achieved both by decreasing the
detector noise and using better performing statistical algorithms.
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Supernovae

Thermonuclear Supernovae: Type Ia - 10"°
» Caused by runaway thermonuclear burning of - —
white dwarf fuel to Nickel S ..
> Roughly of 10°! ergs released = 10
» Very bright, used as standard candles §
» No remnant ; 108
Core Collapse Supernovae: Type I1, Ib, Ic¢ &
» Result from the collapse of an iron core in an g 107
evolved massive star (Mzams >8-10 Mgyn) =
» Few x 1073 ergs released in gravitational collapse, 3
most (99%) radiated in neutrinos ‘IO6
» Spread stellar evolution elemental products 0 50 100 150 200 \
throughout galaxy Time (dGYS)

> Neutron star or black hole remnant

Absolute magnitude



Massive Stars: Burning stages

Stars spend most of their lives
burning hydrogen.

The product — helium — settles in the
core and will burn when
temperatures increase sufficiently.

For massive stars (M > 8-10M_,,), the
process continues through carbon,
oxygen, ..., up to iron.
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H burning 7 million years
He Burning | 0.5 million years
C Burning 600 years

Ne Burning | 1 year

O Burning 6 months

Si Burning | 1 day

This process does not continue past
iron as iron is one of the most tightly
bound nuclei.

Iron core builds up in center of star. _
R 2. C. Phillips, The Physics of Stars, 2nd Edition (Wiley, 1999).



Massive Stars: End Stage

» Stars are, for the majority of the
time, in hydrostatic equilibrium
because the radiation pressure of
the photons from nuclear
reactions balance gravity.

* |ron cores however are supported
by electron degeneracy pressure,
much like a white dwarf, there is a
maximum mass that electron
degeneracy pressure can support.

| |
Stage Imescale

ol AU

H burning 7 million years
He Burning | 0.5 million years
C Burning 600 years

Ne Burning | 1 year

O Burning 6 months

Si Burning | 1 day

ﬁ A. C. Phillips, The Physics of Stars, 2nd Edition (Wiley, 1999).



Onion shell structure of pre-collapse star

Shells of progressively heavier elements
contain the ashes of a sequence of
nuclear burning stages, which finally
build up a degenerate core of oxygen,
neon and magnesium or iron-group
elements at the center.

Convective burning can lead to large

scale  velocity and  density
perturbations in the oxygen and

silicon layers (as indicated for the O-

shell). B

WP H.-Th Janka, arXiv:1702.08825

Fe

(layers not drawn to scale)



Dynamical phases of stellar core collapse and explosion

“Gravitational instz P Core bounce at , Shock stagnation E
i ste ore nuclear density

! Proto-neutron star l
[ - wmpe .

B H.-Th Janka, arXiv:1702.08825

! Neutrino-

Proto-neutr_on star driven “wind”

) Pioto-neti-trorw star - F, ) J i



Before and after the collapse ik
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Predictions of Signals from Supernovae

(magneto-)hydrodynamics of stellar plasma | relativistic gravity

(nuclear) EoS | | neutrino physics _

\v/

SN explosion models

neutrinos nucleosynthesis

lightcurves,
spectra

gravitational waves

explosion asymmetries,
[explosion energies, remnantmasses] " puisar kicks




A new gravitational wave signature from
standing accretion shock instabilities in supernovae
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F1G. 1.— In each set of panels, we plot, top; gravitational wave amplitude of plus mode A4 [cm], bottom; the characteristic wave strain
in frequency-time domain h in a logarithmic scale which is over plotted by the expected peak frequency Fpeak (black line denoted by “A”).
“B” indicates the low frequency component. The component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009;

Miiller et al.2013). The component “B” is considered to be associated with the SASI activities (see Sec. [3)). Left and right panels are for
TM1 and SFHx, respectfively. We mention that SFHx (left) and TM1 (right) are softer and stiffer EoS models, respectively.

WP T. Kuroda et al., Astrophys.J. 829 (2016) no.1, L14



:softe - Vi1 :stiffer
Tpb(ms)=-0.800114

7.5 10. 12. 15. 18. Tpb(ms)=8.59512

7.5 10. 12. 15. 18.

400km [Kuroda et al 2016, ApJL, 2014, PRD]ﬂOOkm

SASI activity higher for softer EOS




Different sCenarios ~eutrino driven CCsNe

g-mode at PNS surface

Non rotating scenario
A

—
)
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Prompt Convection => Evolution of PNS

PNS resonance of SASI '
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Credit: Tomoya Takiwaki Burrows ¢ i, 2007, 47 664418




Phenomenological Waveforms

* The aim of our phenomenologiqal template 1s to mimic the raising arch
observed 1n core-collapse simulations.

* The 1dea 1s that at each time in the post-bounce evolution, the PNS 1s in
quasi-hydrostatic equilibrium and any perturbation will excite the
eigenmodes of the system, in particular g-modes.

* These modes are continually being excited by the hot bubble surrounding
the PNS, in gartlcular by convective motions and SASI. At the same time
these excited modes are damped by the PNS conditions (e.g. by the
existence of convective layers that do not allow for buoyantly supported
waves) and by the presence of non-linearities and instabilities (e.g.
turbulence).

* The GW emission can be modelled as a damped harmonic oscillator with a
random forcing, in which the frequency varies with time.
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ﬁ Phys.Rev.D 103 (2021) 6, 063011

parameter [min. max. A description

tini [S] 0 0.2 0.1 |beginning of the waveform
tend [8] 02 15 0. end of the waveform

vo [Hz] 50 150 50 frequency at bounce

v1 [Hz] 1000 2000 500 frequency at 1 s

vs [Hz] 1500 4500 1000 frequency at 1.5 s

Vdriver [HZ]

Q
D [kpc]

100 200 100
(1,5,10)
(1,2,5,10,15)

driver frequency
quality factor
distance to source

* New and more flexible parametrisation
for the frequency evolution.

* The distance 1s used as a parameter.



Gravitational Wave Observatories
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Vir;]o, Cascina, Italy

LIGO, Livingston, LA ) "LIGO, Hanford, WA KAGRA, Gifu, Japan



Alm of our Convolutional Neural Network

* We want to perform signal detection as an image
recognition task, classifying the images in two classes:
Real detector Noise and Signal+Real detector Noise.

* The input images are. the RGB multi-detector scalograms.

* The aim is to build a pipeline for a data-driven weakly-
modelled robust search.

* Our RGB approach allows us to straightforwardly exploit
coincidences among different detectors.

17
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RGB time-frequency plane

Coincidences among detectors

Signal+Noise

RGB time-fraquency plare
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WP PhysRev. D 98 (2018) 12, 122002

Additive colour synthesis

LIGO Hanford = red
LIGO Livingston = green
Virgo = blue



Architecture of the deep learning
algorithm

* Mini1 Inception Resnet v1: reduced version of Inception-Resnet
e Keras framework, based on the TensorFlow backend

* Total number of parameters: 98997

* 30 times more complex than previous network

* The task 1s treated as a multi-class classification problem with
two classes: the event class and the noise class, by using the
binary cross entropy.

* The training and validation phase, performed in the real
detector noise, 1s done in 2 h and 21 min using a GPU Nvidia
(Quadro P5000, while predicting the test set takes 3 ms for each
2 s long image.

Input (256x64x3)

Conv 7x7 (=32,

Ef)

Reduction-A

2xInception-resnet-

!

Reduction-A

V

Inception-resnet-A

!

Reduction-A

¢

2xInception-resnet-

!

Reduction-A

+

Inception-resnet-C

4

Reduction-A

!

Sigmoid

256x64x3

Output: 20x125%32

Output: 15%63x52

Output: 15x63x72

Output: 8x32x92

Output: 8x32x102

Output: 8x32x112

Output: 4x16x142

Output: 4x16x152

Output: 2x8x172

Output: 2x8x182

Output: 1



Data: from Gaussian noise to real noise

Gaussian noise # Previous set: 10* images for each value of Network SNR € [8,40]
(Previous work)

« Training set — phenomenological waveforms: 7 x 10 images
for each distance € [0.2, 3] kpc and random sky localisation.
Real noise

(02 — August 2017)  Blind set — phenomenological waveforms: 26 x 10* images with
distances chosen in a uniform distribution € [0.2, 15] kpc.
NOT involved in the training or validation procedure.

e Test set - numerical simulations from the literature: 6.5 x 10*
images with distances € [0.1, 15] kpc

In particular, we chose a stretch of real data even containing glitches, taken during August 2017, when
Virgo joined the run. The period includes about 15 days of coincidence time among the three detectors and
we used this data set to generate about 2 years of time-shifts data to train and test the neural network as

noise class. B Phys.Rev.D 103 (2021) 6, 063011



Measuring and constraining the learning

Confusion matrix

©*: decision Actual class
threshold I Event Noise

) Event True False
il positive (TP) | positive (FP)
class
: False True
Noise
negative (FN) |negative (TN)

Frequency

Efficiency:

correctly classified signals TP

HONN = the signals at CNN input " TP+ FN

0 P ‘g 1
robabilit
Y False Alarm Rate:
* The output of the network is a probability vector 0, FAR _ misclassified noise =~ FP
which contains the probabilities of the template CNN —

. all classified events FP+TP
belonging to one class or another. s

« The classification task is performed according to a False Positive Rate: FPR= 5 TN
threshold 9%, the template will be classified as event
class only if its porbability overcomes 0*.




Comparison with previous work in Gaussian noise

Weighted binary cross-entropy:

w=1 correctly classify the noise
class or the event class is the
same

w=2 1t 1S 2 times more
important to correctly classify
the noise class rather than the
event class.

Newnn (%)

100 -
95 1
90 -
Bae

80 -

ﬁ Phys.Rev. D 103 (2021) 6, 063011

Efficiency and FAR for different penalizations w
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Validation process in real detector noise

Efficiency and FAR for © " = 65% for N = 30000 and w=2.0
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Results in real detector noise
Probability density histogram for w = 2.0

0" =65%

Real detector noise
Blind set

Test set
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Results in real detector noise

Efficiency vs distance

100
-~ Blind set
— Test set
90
—~ 80
>
=
=
S
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60 —
=0 0 2 4 6 8 10 12 14

_ Distance (kpc)
- Phys.Rev.D 103 (2021) 6, 063011



Results in real detector noise
Efficiency vs SNR

100 | —— Blind set
— Test set

90

Efficiency (%)
(o0
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~J
o
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x

1 2 4 6 810 15 20 30 40 60 100 150200
S = SNR
B Phys.Rev.D 103 (2021) 6, 063011



Conclusions

* We trained a newly developed Mini-Inception Resnet neural network
using time-frequency 1mages corresponding to injections of simulated
phenomenological signals, which mimic the waveforms obtained 1n
3D numerical simulations of CCSNe.

* We computed the detection efficiency versus the source distance,
obtaining that, for signal to noise ratio higher than 15, the detection
efficiency 1s 70 % at a false alarm rate lower than 5%.

* In the case of O2 run, it would have been possible to detect signals
emitted at 1 kpc of distance, whilst lowering down the efficiency to
60%, the event distance reaches values up to 14 kpc.

* These results are very promising for future detections and the
algorithm has multiple possible extensions.






Waveforms for the test set

TABLE II: List of models of the test set used in the injections. Mzams corresponds to the progenitor mass at
zero-age in the main sequence (ZAMS). Unless commented, all progenitors have solar metallicity, result in explosions
and their GW signal do not show signatures of the standing-shock accretion instability (SASI).

Model name reference Mzams comments
s9 [47] oM Low mass progenitor, low GW amplitude.
s25 [47] 25M Develops SASL.
s13 [47] 13M Non-exploding model.
s18 (48] 18M Higher GW amplitude.
he3.5 (48] - Ultra-stripped progenitor (3.5M;, He core).
SFHx [49] 15M Non-exploding model. Develops SASI.
mesa2( [50] 20M
mesa20_pert  [50] 20M; Same as mesa20, but including perturbations.
s11.2 [31] 11.2Mg
L15 (28] 15M¢ Simplified neutrino treatment.

ﬁ Phys.Rev.D 103 (2021) 6, 063011



Results in real detector noise
Probability density histogram for w = 2.0

Given the counts of the ith bin
c; and its width b,, we define
the probability density as

ci/ (X7 ci % bi),

where N 1s the total number of
bins of the histogram.
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ROC curves
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Previous work

Task: classification problem
Classes: 0 class (noise) and 1 class (event) with different level of noise (SNR)

Learning: curriculum learning

Input (Nx256:54x3)

Data: Gaussian noise
RGEB composition

d . : g Zaro Padcing
'

Convolution (3x3x8)

Efficency (%)

L ]
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ﬁ PhyS.REV. D 98 (2018) 12’ 122002 Figure 4: Sketch of the architecture of our model,



