Infrastructure status and plans at CERN¹⁾

W. Weingarten/CERN

 Most of the slides are based on a talk given by O. Brunner at the 4th ESS-SPL collaboration meeting <u>http://indico.cern.ch/conferenceTimeTable.py?confId=82809#20100630.detailed</u>

Outline

- RF premises at CERN
- RF available infrastructure
- High power and SC RF activities
- SCRF premises at SM18
- Conclusion

RF – premises ²

RF - available infrastructure 1

•Building A5:

•LHC & Linac4 High Voltage

•Klystron modulators, fast protection systems, klystron HV tanks •100kV, 15mA power supply

•Building 112:

•LHC & Linac4 High Power RF

•Tests of klystrons, circulators, WG, HV equipment, controls

•LHC power coupler tests

•100kV, 20A power supply, Linac 2Hz modulator

•Building 152:

Linac4 3MeV test station

•Tests of Linac4 3MeV section (in 2011) + some L4 RF structures (2010 ->?)

•Complete Linac4 2Hz power station (modulator, klystron,..)

•Building 252:

SC cavities coating & clean rooms

- •LHC, HIE Isolde, SPL
- •Nb deposition system for HIE Isolde cavities (system for LHC cavities to be re-installed)
- •Low pressure ultra pure water rinsing (max 10 bars)

•Two clean room (class 10000, 100)

•Building 118 (vacuum group):

Chemical treatments

•LHC, HIE ISOLDE, SPL + many other activities

•EP station

•High pressure ultra pure water rinsing (100 bars)

RF - available infrastructure ²

•Building SM18:

•Cavity/cryomodule assembly

•Two 15m clean rooms (class1000/10) + access zone

•One 4 meter high clean room (class100)

Four vertical cryostats

Two bunkers

•High RF power zone

Main control room

Cryogenic system

Limited availability (LHe to be shared with other SM18 activities -> LHC magnets)
LHe distribution line will be replaced in 2011

High power and SC RF activities 1

High power RF

•LHC

•400MHz, 330kW CW, 16 power stations in LHC + 2 test stations •Linac4

•352MHz, 1.3/2.8 MW, 19 future power stations + 3 test stations •CLIC&CTF3

•3GHz, 45 MW, 1.5GHz, 25 MW, 13 power stations + 1 place •12GHz, 50MW, 1 test station

•LEP RF equipment tests for external requests •352MHz

•SPL test stand

•704 MHz, ≈1MW, 50 Hz, 1 future test stand

Crab cavities

•Under study..

High power and SC RF activities ²

SC cavities & Cryomodules

•LHC

•4 cryomodules in LHC, 1 spare + 1 spare cavity

•3+2 spare cavities to be built & tested (2011-2012) •HIE ISOLDE

•32 cavities to be built & tested

•5 cryomodules to be assembled & tested

•SPL

•4 cavities to be built & tested

1 cryomodules to be assembled & tested

•CLIC & CTF3 structures

•RF structure assembly in clean rooms

SCRF premises at SM18

General parameters for vertical cryostats/bunkers/cryoplant for SCRF cavity/cryo-module tests

General parameter	V3	V4	V5	V6	Bunker A	Bunker B
Size (depth/diam) [m]	4/1.1	2.5/1.1	4/1.1	4/1.1	13 m useful length	13 m useful length
RF frequency [MHz]	704	400 - 1200	100	400	352 – 704	101 - 400
Typical temperature range [K]	2.0 - 4.5	2.0 – 4.5	4.5	4.5	2.0 - 4.5	4.5
Nominal installed RF power	300 W	200 – 400 W	600 W	300 W	300 W CW – 1 MW pulsed	300 W – 300 kW
Max. IHe production @ 4.5 K [g/s] with shared utility	≤ 30 g/s (600 W cooling capacity as liquefier)					
Capacity of pumping unit at 30 mbar [g/s]	18 (36 with 2 pumping units)					
Cooling capacity at cryostat @ 2.1 K, 42 mbar	15 g/s (330 W) liquefier operation					

In red: to be refurbished

SCRF premises at SM18: Existing clean room facility

Baldaquin Class 100

What is missing for high gradient

resonators?

-High Pressure Rinsing (HPR)

- -Ultra Pure Water (UPW)
- -Clean space dedicated to the cleaning operations

-Better cleanliness

-More space

W. Weingarten/CERN

Slide courtesy J. Chambrillon

SCRF premises at SM18: Upgrade proposal clean room facility

Slide courtesy J. Chambrillon

SCRF premises at SM18: SPL cryomodule – cavities - assembly

•Will profit from all existing infrastructure

- Clean rooms
- •UP water rinsing stations
- •EP station

•SM18 clean rooms not fully compliant with SPL cryomodule assembly requirements

•Must be equipped with:

•Dressing zone (class100)

•UP water rinsing zone(class 100) – main couplers, HOM couplers,..
•Existing 15 m class 10 room shall be equipped with vacuum leak detection and other equipment

 \rightarrow J. Chambrillon, Cleanroom refurbishment in SM18 within the SPL project frame, feasibility study, sLHC Project Note 0026, 2011-01-24

SCRF premises at SM18: SPL cryomodule – Cavity tests

•SM 18 is equipped with four vertical cryostats

- •LHC cavities (4.2K) operational
- •HIE Isolde cavities (4.2K) operational
- •Quadrupole resonator for sample tests (2K) operational
- •SPL cavities (2K) availability: summer 2011

•One fellow works on SC cavities diagnostic tools

Temperature & X-ray mapping (not yet started)He II second sound development (test station in CERN Cryolab)

SCRF premises at SM18: SPL – high power tests 1

•Two bunkers in SM18:

•Bunker A :

•will be modified for 2K operation (2011) /control system to be completely renewed •will be modified for the Linac4 RF structure tests (2011 -> end 2012) ready for SPL cryomodule tests in 2013

•Bunker B:

•operational

•priority: LHC cryomodules

•HIE Isolde cryomodule tests (2012/14)

SCRF premises at SM18: SPL – high power test

•Bottleneck is the High RF power zone:

Very crowded area:
100kV, 40A Power Converter
LHC high RF power
LHC HV bunker
352MHz 1.3MW klystron (Linac4 tests)
No real extension possible

•Upgrade towards Linac4 / SPL tests:

•Move LHC HV bunker to free space for pulsed modulator •2011: installation of a 2Hz Linac 4 type modulator •Asap: integration of 50Hz modulator – **footprint??**

•Specify & order high power components •704MHz, 1MW klystron (specs 90% completed) •Interface with modulator not defined! •Circulator & RF load (specs to be done) •WG components (specs to be done)

•Specify & built control system •ready early 2011 for L4 tests

Conclusions

•Several projects going on in parallel

•Existing infrastructure: good starting point

•Objective is to get the best share of the existing infrastructures between activities/projects

•Upgrade of infrastructures is ongoing, in particular for the SPL cryo-module

- •High pressure UP water rinsing
- •Electro-polishing station (new)
- •Cavity vertical test stations, diagnostic tools
- •SM18 IHe distribution line to be changed (2 K operation, reduction of static losses)
- •SM18 clean room upgrade necessary

•SPL cryo-module high power tests

•Bunker A in SM18 requires hardware modification to host SPL high power tests •50Hz modulator size under study

•Will profit from preparation work done for Linac 4

•Specification documents for 704 MHz high power equipment in preparation