Surface Roughness Investigations on Nb Samples using Optical Profilometry

A. Navitski, S. Lagotzky, G. Müller FB C Physik, Bergische Universität Wuppertal gmueller@uni-wuppertal.de

- Motivation and strategy
- Surface roughness measurement techniques
- Results on polycrystalline Nb samples from DESY
- Results on single crystalline Nb samples from TJNAF
- Conclusion and outlook

Nb samples from: A. Matheisen, D. Reschke, X. Singer, J. Ziegler (DESY) P. Kneisel (TJNAF)

Financial support: Helmholtz Alliance "Physics at the Terascale" and BMBF

Bergische Universität Wuppertal

Motivation and strategy

- Enhanced field emission (EFE) is caused by particulates or scratches [1]
- Quenches and high-field Q-drop might depend on surface roughness [2]
- Number density of particulates can be much reduced by HPR [3], DIC [4] and clean room assembly, but influence of surface irregularities on EFE and quenches of poly/single crystalline EP/BCP Nb has been less studied
 - [1] A. Dangwal et al., Phys. Rev. ST Accel. Beams 12, 023501 (2009).
 - [2] J.Knobloch et al., Proc. 9th Workshop on SRF (1999), p.77.
 - [3] P. Kneisel et al., Proc. 7th Workshop on SRF (1995), p.311.
 - [4] A. Dangwal et al., J. Appl. Phys. 102, 044903 (2007).

>1-st step S

Systematic measurements of average surface roughness and local defect geometry for typical Nb samples by means of optical profilometry and AFM

Localization and characterization of effective field emitters (E_{on} (1 nA), β , S) on the same Nb samples after HPR with FESM and in-situ SEM imaging

3-rd step

Ex-situ HRSEM/EDX identification of emitting defects and investigation of the correlation between EFE parameters and geometry of defects

Surface roughness measurement techniques

Optical profilometer (OP)

white light irradiation and spectral reflection

- fast scanning speed (100×100 pixel per min)
- samples up to 20×20 cm² and 5 cm height
- 2 µm lateral and 3 nm height resolution
- atomic force microscope (AFM) operated in contact or non-contact mode
 - 2 μm positioning accuracy within OP scan
 - 34×34 µm² scanning range
 - 3 nm lateral and 1 nm height resolution
- CCD camera for positioning control
- granite plate with an active damping system for undisturbed measurement at nm scale
- clean laminar air flow from the back to reduce particulate contamination

Bergische Universität Wuppertal

Average surface roughness and electric field enhancement

Definition of average surface roughness

$$R_a = \frac{1}{n \cdot m} \sum_{i=1}^n \sum_{j=1}^m \left| z(x_i, y_j) - \overline{z} \right|$$

$$R_q = \sqrt{\frac{1}{n \cdot m} \sum_{i=1}^n \sum_{j=1}^m \left(z(x_i, y_j) - \overline{z} \right)^2}$$

 $z(x_i, y_j)$ = actual height value of profile n, m = pixel number in x and y direction \overline{z} = average height value Estimated electric field enhancement for protrusions, activated particulates (initially MIM) and scratches:

$$\beta_E = \frac{E_L}{E_S} \approx \frac{h}{r}$$

ightarrow emission area $S pprox 2\pi r^2$

 E_L = local electric field on defect E_S = electric field on flat surface h = height of defect r = curvature radius

Results on polycrystalline Nb samples from DESY

Nb samples were assembled into the coupler port and BCP/EP/HPR processed with 9-cell cavities

^{um} 4 types of surface irregularities found with OP:

- particulates
- scratches
- grain boundaries
- round hills and holes

Bergische Universität Wuppertal

OP results on polycrystalline Nb samples from DESY

Scratches

G. Müller, 02.03.2011

Bergische Universität Wuppertal

OP results on polycrystalline Nb samples from DESY

Grain boundaries

and modified chemical reactions during EP

height < 17 µm
size 10 - 440 µm
$$R_a = 0.295 µm$$

 $R_q = 0.489 µm$
 $\beta_{E,max} < 4$

only weak EFE expected

but probably high magnetic field enhancement β_M ?

EFE/SEM/OP results on polycrystalline HPR-Nb samples

EFE/SEM results on polycrystalline Nb samples

In most EFE locations it is difficult to identify the exact emitter position due to complex geometry of defects

AFM measurements are required for β_{geo} estimation of small structures

Bergische Universität Wuppertal

Results on single crystalline Nb samples from TJNAF

In order to investigate the possible advantages of single crystalline Nb for SRF, 4 round samples with varying BCP damage layer removal (20, 40, 80, 120 μ m) and two marks at the edge for clear orientation have been measured with OP.

Bergische Universität Wuppertal

OP of single crystal Nb for different BCP layer removal

scanned area 1×1 mm²

Average surface roughness of single crystal BCP-Nb

Each point based on profiles in 10 different defect-free areas of 1 mm² BCP roughness

G. Müller, 02.03.2011

Regular pit-like features on single crystal BCP-Nb

Bergische Universität Wuppertal

Milano Meeting

COLLABORATION

Few local defects found on single crystal BCP-Nb

All samples showed a few local defects (> 5 μ m) which might cause EFE

BCP 40 μ m accumulated particulates average size ~ 22 μ m, Δ h 5 = μ m resistant against nitrogen blow

BCP 80 µm long scratch (~ 0.8 mm)

mean width 100 μ m, depth 1-2 μ m at one end peak $\Delta h = 10 \mu$ m

Bergische Universität Wuppertal

OP of Nb samples (> µm) is suitable for fast quality control of processes

Results for polycrystalline samples:

- Particulates with $\beta_{E,max}$ > 15 must be removed by HPR and DIC
- Scratches with $\beta_{E,max}$ > 13 must be prevented by a more careful handling
- Grain boundaries (∆h ≈ µm), hills and holes are not harmful for EFE but probably cause magnetic field enhancement and limitation?
- Emitter density of EP/HPR Nb samples increases exponentially with field
- Correlation between EFE, SEM and OP of localized emitters difficult

Results and outlook for single crystalline samples:

- Mean surface roughness decreases exponentially with BCP layer removal
- Regular pit-like features and few defects found, influence on EFE ?
- Correlation between EFE, SEM and OP of localized emitters will be easier
- Activation of various types of emitters by heating will be investigated soon

