Reactions to continuum with bound state methods: the integral transform approach

Giuseppina Orlandini

Introd. $\left\{\begin{array}{c}\text { Reactions to continuum } \\ \text { with bound state methods: }\end{array}\right.$ the integral transform approach

Giuseppina Orlandini

Reactions to continuum

non-perturbative (hadronic)

$$
a+b--->c+d+\ldots
$$

perturbative (electro-weak)
$\gamma^{(*)}+\mathrm{b}--->\mathrm{c}+\mathrm{d}+\ldots$
Where a,b,c,d... are single nucleons or bound nuclear systems
In total: A nucleons involved A-BODY PROBLEM!

Reactions to continuum

Framework:

- Energies in the non-relativistic regime \rightarrow Non-Relativistic Quantum Mechanics (including Translation, Galileian, Rotational invariances) $\left[\mathrm{H}, \mathrm{P}_{\mathrm{cm}}\right]=0 \quad\left[\mathrm{H}, \mathrm{R}_{\mathrm{cm}}\right]=0 \quad[\mathrm{H}, \mathrm{J}]=0$
- Degrees of freedom: total A nucleons ("microscopic" model)
- $\mathrm{H}=\mathrm{T}+\mathrm{V} \quad \mathrm{V}=\boldsymbol{\Sigma}_{\mathrm{ij}} \mathrm{v}_{\mathrm{ij}}+\left(\Sigma_{\mathrm{ijk}} \mathrm{v}_{\mathrm{ijk}}+\ldots\right)$

Digression about potentials for

 microscopic approaches(few/not-so-few-nucleon systems)

Before S. Weinberg 1990 V_{i} :

- generalization of Yukawa idea: exchange of pion ----> exchange of mesons (OBEP)
- phenomenological but including symmetries:

phenomenological potentials

to the isospin-invariant case. The available vectors are given by the position, momentum and spin operators for individual nucleons: $\vec{r}_{1}, \vec{r}_{2}, \vec{p}_{1}, \vec{p}_{2}, \vec{\sigma}_{1}, \vec{\sigma}_{2}$. The translational and Galiean invariance of the potential implies that it may only depend on the relative distance between the nucleons, $\vec{r} \equiv \vec{r}_{1}-\vec{r}_{2}$, and the relative momentum, $\vec{p} \equiv\left(\vec{p}_{1}-\overrightarrow{p_{2}}\right) / 2$. Further constraints due to (i) rotational invariance, (ii) invariance under a parity operation, (iii) time reversal invariance, (iv) hermiticity as well as (v) invariance with respect to interchanging the nucleon labels, $1 \leftrightarrow 2$, lead to the following operator form of the potential [7]:

$$
\begin{equation*}
\left\{1_{\text {spin }}, \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}, S_{12}(\vec{r}), S_{12}(\vec{p}), \vec{L} \cdot \vec{S},(\vec{L} \cdot \vec{S})^{2}\right\} \times\left\{1_{\text {isospin }}, \tau_{1} \cdot \tau_{2}\right\}, \tag{2.2}
\end{equation*}
$$

where $\vec{L} \equiv \vec{r} \times \vec{p}, \vec{S} \equiv\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) / 2$ and $S_{12}(\vec{x}) \equiv 3 \vec{\sigma}_{1} \cdot \hat{x} \vec{\sigma}_{2} \cdot \hat{x}-\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}$ with $\hat{x} \equiv \vec{x} /|\vec{x}|$. The operators entering the above equation are multiplied by scalar operator-like functions that depend on r^{2}, p^{2} and L^{2}.

- Both OBEP and phenomenological potentials end up in combinations of the same operator terms and a total of about 40 parameters (SM: 19 parameters !)
- Both OBEP and phenomenological potentials end up in combinations of the same operator terms and a total of about 40 parameters
(SM: 19 parameters !)
- Parameters are obtained by best fit on deuteron and about 4000 nucleon-nucleon scattering data at E_{cm} below pion threshold (140 MeV)
- Both OBEP and phenomenological potentials end up in combinations of the same operator terms and a total of about 40 parameters
(SM: 19 parameters !)
- Parameters are obtained by best fit on deuteron and about 4000 nucleon-nucleon scattering data at E_{cm} below pion threshold (140 MeV)
- χ-square per data: 1.05-1.1!

Question:

- How do these "perfect" potentials at two-body level perform for $\mathrm{A}=3$?
Do they reproduce triton binding energy of 8.48 MeV ?

Answer:

No!

8.00(5) MeV (OBEP) 7.62(4) MeV (Phen.) 8.481798(3) MeV (EXP)

at least half of an MeV is missing!

The discrepancy in the triton binding energy establishes the importance of three-body forces $\mathbf{V}_{\mathrm{ijk}}$

Notice:

the assumption

is similar to the gravitational problem, namely only two-body interactions between A point-masses are present.

Notice:

the assumption

is similar to the gravitational problem, namely only two-body interactions between A point-masses are present.

However, in classical gravitation when 3 extended objects (e.g. moon-earth-sun) are treated as point masses ---> three-body "tidal" forces arise !!!

Notice:

the assumption

is similar to the gravitational problem, namely only two-body interactions between A point-masses are present.

However, in classical gravitation when 3 extended objects (e.g. moon-earth-sun) are treated as point masses ---> three-body "tidal" forces arise !!!

In principle if A non-elementary objects like nucleons are treated as point particles also 3-4-...N-body forces should arise.

The nuclear hamiltonian

Kinetic energy

The nuclear hamiltonian

Kinetic energy

How is the ${ }^{4}$ He binding energy?

28.3(1) MeV (Phen.) 28.2956(6) MeV (EXP) agree at few tens of MeV level

A less

 phenomenological approach:
S. Weinberg's idea

1) notice a separation of scale between $\mathrm{Q} \sim \mathrm{m}_{\pi}$ and $\Lambda=M_{\mathrm{p}}$

2) write the most general

Lagrangian with pions and nucleons as relevant degrees of freedom... 3) ... consistent with QCD symmetries including chiral symmetry,
4) expand it in terms of $(Q / \Lambda)^{n}$ than 4-body...

END

Digression about potentials for

microscopic approach
(few/not-so-few-nucleon systems)

Reactions to continuum

Framework:

- Energies in the non-relativistic regime \rightarrow Non-Relativistic Quantum Mechanics (including Translation, Galileian, Rotational invariances) $\left[\mathrm{H}, \mathrm{P}_{\mathrm{cm}}\right]=0 \quad\left[\mathrm{H}, \mathrm{R}_{\mathrm{cm}}\right]=0 \quad[\mathrm{H}, \mathrm{J}]=0$
- Degrees of freedom: total A nucleons ("microscopic" model)
- $\mathrm{H}=\mathrm{T}+\mathrm{V} \quad \mathrm{V}=\boldsymbol{\Sigma}_{\mathrm{ij}} \mathrm{v}_{\mathrm{ij}}+\left(\Sigma_{\mathrm{ijk}} \mathrm{v}_{\mathrm{ijk}}+\ldots\right)$

Reactions to continuum

perturbative (electro-weak)
$\gamma^{(*)}+b--->c+d+\ldots$

Reactions to continuum

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory
perturbative (electro-weak)
$\gamma^{(*)}+b--->c+d+\ldots$

Reactions to continuum

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

$$
\sigma(\omega) \sim \quad|<\mathrm{n}| \Theta|0>|^{2} \quad \delta\left(\omega-\mathrm{E}_{\mathrm{n}}+\mathrm{E}_{0}\right)
$$

$$
\begin{array}{r}
H\left|n>=E_{n}\right| n> \\
\text { perturbative (electro-weak) } \\
\gamma^{(s)}+b---->c+d+\ldots
\end{array}
$$

Reactions to continuum

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

Reactions to continuum

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

Reactions to continuum

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

Reactions to continuum

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

Reactions to continuum

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

"Selected Topics in Nuclear and Atomic Physics", Fiera di Primiero, Oct.1-6, 2017

Reactions to continuum

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

$$
\sigma(\omega) \sim \sum_{n}|<n| \Theta|0>|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

$$
\Sigma_{\mathrm{n}}|\mathrm{n}><\mathrm{n}|=\mathrm{I}
$$

$$
\mathrm{H}\left|\mathrm{n}>=\mathrm{E}_{\mathrm{n}}\right| \mathrm{n}>
$$

Reactions to continuum

PERTURBATIVE INCLUSIVE

$$
S(\omega)=\sum_{n}|<n| \Theta|0>|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

S (ω) represents the crucial quantity Requires the solution of both the bound and continuum A-body problem

We see next that in case of non perturbative reactions the crucial quantity for calculating the cross section has a very similar form

Reactions to continuum

non-perturbative (hadronic)

$$
a+b--->c+d+\ldots
$$

$$
\sigma(\omega) \sim\left|T_{\beta \alpha}(E)\right|^{2}
$$

H is the Hamiltonian of the 8-body system

Reactions to continuum

non-perturbative (hadronic)

$$
a+b--->c+d+\ldots
$$

$$
\sigma(\omega) \sim\left|T_{\beta \alpha}(E)\right|^{2}
$$

Reactions to continuum

non-perturbative (hadronic)

$$
a+b--->c+d+\ldots
$$

$$
\sigma(\omega) \sim\left|T_{\beta \alpha}(E)\right|^{2}
$$

General form of
(cfr eq. (108) in ch. 5 of Goldberger-Watson Collision Theory)

Reactions to continuum

non-perturbative (hadronic)

$$
a+b--->c+d+\ldots
$$

$$
\sigma(\omega) \sim\left|T_{\beta \alpha}(E)\right|^{2}
$$

General form of
(cfr eq. (108) in ch. 5 of Goldberger-Watson Collision Theory)

$$
\mathrm{T}_{\beta \alpha}(\mathrm{E})=<\chi_{\beta} \mathcal{\nu}_{\alpha} \chi_{\alpha}>+<\chi_{\beta} \mathcal{V}_{\beta}(\mathrm{E}-\mathrm{H}+\mathrm{i} \eta)^{-1} \mathcal{V}_{\alpha} \chi_{\alpha}>
$$

Reactions to continuum

non-perturbative (hadronic)

$$
a+b--->c+d+\ldots
$$

$$
\sigma(\omega) \sim\left|T_{\beta \alpha}(E)\right|^{2}
$$

General form of
(cfr eq. (108) in ch. 5 of Goldberger-Watson Collision Theory)

$$
\mathrm{T}_{\beta \alpha}(\mathrm{E})=<\chi_{\beta} \mathcal{V}_{\alpha} \chi_{\alpha}>4<\chi_{\beta} \mathcal{V}_{\beta}(\mathrm{E}-\mathrm{H}+\mathrm{i} \eta)^{-1} \mathcal{V}_{\alpha} \chi_{\alpha}>
$$

A-body continuum energy

Reactions to continuum

non-perturbative (hadronic)

$$
a+b--->c+d+\ldots
$$

$$
\sigma(\omega) \sim\left|T_{\beta \alpha}(E)\right|^{2}
$$

General form of

(cfr eq. (108) in ch. 5 of Goldberger-Watson Collision Theory)
$\mathrm{T}_{\beta \alpha}(\mathrm{E})=\left\langle\chi_{\beta} \mathcal{V}_{\alpha} \chi_{\alpha}>+\left\langle\chi_{\beta} \mathcal{V}_{\beta}(\mathrm{E}-\mathrm{H}+\mathrm{i} \eta)^{-1} \mathcal{V}_{\alpha} \chi_{\alpha}>\right.\right.$
χ_{β} and χ_{α} are the "channel functions" (with proper antisymmetrization), namely products of the bound states of a and b , times a relative Plane Wave

$$
\left|\chi_{\alpha}>=\mathcal{A}\right| \mathrm{a}>|\mathrm{b}>| \mathscr{P W}>
$$

Channels:

$$
\begin{aligned}
& \text { e.g. } \\
& A=4
\end{aligned}
$$

$$
\sum_{E>E_{u k}}
$$

$1+1+1+1$

H is the Hamiltonian of the 8-body system

General form of T-matrix

General form of T-matrix

If we denote $\quad \nu_{\alpha, \beta} \chi_{\alpha, \beta}=\phi_{\alpha, \beta}$
$\nu_{\alpha, \beta}$ is the sum of the potentials between particles belonging to different fragments

H is the Hamiltonian of the 8-body system

General form of T-matrix

One can manipulate the non trivial part:

$<\phi_{\beta} \mid(E-H+i \eta)^{-1} \phi_{\alpha}>=$

Step 1) Insert completeness of eigenstates $\mid n>$ of $H: \Sigma_{n}|n \gg n|=1$

One can manipulate the non trivial part:

$<\phi_{\beta} \mid(E-H+i \eta)^{-1} \phi_{\alpha}>=$

Step 1) Insert completeness of eigenstates $\mid n>$ of $H: \Sigma_{n}|n \gg n|=\mid$
$=\sum_{n}<\phi_{\beta}|n><n|(\mathbf{E}-\mathbf{H}+\mathrm{i} \eta)^{-1} \phi_{\alpha}>=$

One can manipulate the non trivial part:

$<\phi_{\beta} \mid(E-H+i \eta)^{-1} \phi_{\alpha}>=$

Step 1) Insert completeness of eigenstates $\mid n>$ of $H: \Sigma_{n}|n><n|=1$
$=\boldsymbol{\Sigma}_{\mathrm{n}}<\phi_{\beta}|\mathrm{n}><\mathrm{n}|(\mathrm{E}-\mathrm{H}+\mathrm{i} \eta)^{-1} \phi_{\alpha}>=$
$=\Sigma_{\mathrm{n}}<\phi_{\beta}|\mathrm{n}><\mathrm{n}|\left(\mathrm{E}-\mathrm{E}_{\mathrm{n}}+\mathrm{i} \eta\right)^{-1} \phi_{\alpha}>=$

One can manipulate the non trivial part:

$<\phi_{\beta} \mid(E-H+i \eta)^{-1} \phi_{\alpha}>=$

Step 1) Insert completeness of eigenstates $\mid \mathrm{n}>$ of $\mathrm{H}: \Sigma_{\mathrm{n}}|\mathrm{n}><\mathrm{n}|=1$
$=\boldsymbol{\Sigma}_{\mathrm{n}}<\phi_{\beta}|\mathrm{n}><\mathrm{n}|(\mathrm{E}-\mathrm{H}+\mathrm{i} \eta)^{-1} \phi_{\alpha}>=$
$=\Sigma_{\mathrm{n}}<\phi_{\beta}|\mathrm{n}><\mathrm{n}|\left(\mathrm{E}-\mathrm{E}_{\mathrm{n}}+\mathrm{i} \eta\right)^{-1} \phi_{\alpha}>=$

Step 2) Insert delta function

One can manipulate the non trivial part:

$<\phi_{\beta} \mid(E-H+i \eta)^{-1} \phi_{\alpha}>=$

Step 1) Insert completeness of eigenstates $\mid \mathrm{n}>$ of $\mathrm{H}: \Sigma_{\mathrm{n}}|\mathrm{n}><\mathrm{n}|=1$
$=\boldsymbol{\Sigma}_{\mathrm{n}}<\phi_{\beta}|\mathrm{n}><\mathrm{n}|(\mathrm{E}-\mathrm{H}+\mathrm{i} \eta)^{-1} \phi_{\alpha}>=$
$=\Sigma_{\mathrm{n}}<\phi_{\beta}|\mathrm{n}><\mathrm{n}|\left(\mathrm{E}-\mathrm{E}_{\mathrm{n}}+\mathrm{i} \eta\right)^{-1} \phi_{\alpha}>=$

Step 2) Insert delta function
$=\int \mathrm{d} \omega \Sigma_{\mathrm{n}} \delta\left(\omega-\mathrm{E}_{\mathrm{n}}\right)(\mathrm{E}-\omega+\mathrm{i} \eta)^{-1}<\phi_{\beta}|\mathrm{n}><\mathrm{n}| \phi_{\alpha}>=$

One can manipulate the non trivial part:

$<\phi_{\beta} \mid(E-H+i \eta)^{-1} \phi_{\alpha}>=$

Step 1) Insert completeness of eigenstates $\mid \mathrm{n}>$ of $\mathrm{H}: \Sigma_{\mathrm{n}}|\mathrm{n}><\mathrm{n}|=1$
$=\boldsymbol{\Sigma}_{\mathrm{n}}<\phi_{\beta}|\mathrm{n}><\mathrm{n}|(\mathrm{E}-\mathrm{H}+\mathrm{i} \eta)^{-1} \phi_{\alpha}>=$
$=\Sigma_{\mathrm{n}}<\phi_{\beta}|\mathrm{n}><\mathrm{n}|\left(\mathrm{E}-\mathrm{E}_{\mathrm{n}}+\mathrm{i} \eta\right)^{-1} \phi_{\alpha}>=$

Step 2) Insert delta function
$=\int \mathrm{d} \omega \Sigma_{\mathrm{n}} \delta\left(\omega-\mathrm{E}_{\mathrm{n}}\right)(\mathrm{E}-\omega+\mathrm{i} \eta)^{-1}<\phi_{\beta}|\mathrm{n}><\mathrm{n}| \phi_{\alpha}>=$
$=\int \mathrm{d} \omega(\mathrm{E}-\omega+\mathrm{i} \eta)^{-1} \mathrm{~F}_{\alpha \beta}(\omega)=$

One can manipulate the non trivial part:

$<\phi_{\beta} \mid(\mathrm{E}-\mathrm{H}+\mathrm{i} \eta)^{-1} \phi_{\alpha}>=$

Step 1) Insert completeness of eigenstates |n> of H:
$=\Sigma_{\mathrm{n}}<\phi_{\beta}|\mathrm{n}><\mathrm{n}|(\mathrm{E}-\mathrm{H}+\mathrm{i} \eta)^{-1} \phi_{\alpha}>=$
$=\Sigma_{\mathrm{n}}<\phi_{\beta}|\mathrm{n}><\mathrm{n}|\left(\mathrm{E}-\mathrm{E}_{\mathrm{n}}+\mathrm{i} \eta\right)^{-1} \phi_{\alpha}>=$

Step 2) Insert delta function

$$
\begin{aligned}
& =\int d \boldsymbol{\omega} \sum_{\mathrm{n}} \delta\left(\boldsymbol{\omega}-\mathrm{E}_{\mathrm{n}}\right)(\mathbf{E}-\boldsymbol{\omega}+\mathrm{i} \boldsymbol{\eta})^{-1}<\phi_{\beta} \mid \mathrm{n}><\mathrm{n} \| \phi_{\alpha}>= \\
& =\int d \boldsymbol{\omega}\left(\mathbf{E}-\boldsymbol{\omega}+\mathrm{i} \boldsymbol{\eta}^{-1} \mathrm{~F}_{\alpha \beta}(\omega)=\right.
\end{aligned}
$$

$$
\text { the problem reduces to calculate the function } F_{\alpha \beta}(\omega)
$$

$$
F_{\alpha \beta}(\omega)=\sum_{\mathrm{n}} \delta\left(\omega-\mathrm{E}_{\mathrm{n}}\right)<\phi_{\beta}|\mathrm{n}><\mathrm{n}| \phi_{\alpha}>
$$

Similar expressions!

Non-Pert.

$$
\mathrm{F}_{\alpha \beta}(\omega)=\sum_{\mathrm{n}}<\phi_{\beta}|\mathrm{n}><\mathrm{n}| \phi_{\alpha}>\delta\left(\omega-\mathrm{E}_{\mathrm{n}}\right)
$$

Pert.

$$
S(\omega)=\Sigma_{n}<0\left|\Theta^{+}\right| n><n|\Theta| 0>\delta\left(\omega-E_{n}+E_{0}\right)
$$

Similar expressions!

Non-Pert.

Pert.

$$
\mathrm{S}(\omega)=\Sigma_{\mathrm{n}}<0 \Theta^{+}|\mathrm{n}><\mathrm{n}| \Theta \mid 0>\delta\left(\omega-\mathrm{E}_{\mathrm{n}}+\mathrm{E}_{0}\right)
$$

$\left.|0>,| \phi_{\alpha}\right\rangle,\left|\phi_{\beta}\right\rangle$ Needs only to be able to calculate bound states!
(Remember: $\phi_{\alpha}=\mathcal{V}_{\alpha} \chi_{\alpha}=\mathcal{V}_{\alpha} \mathcal{A}|\mathrm{a}>|\mathrm{b}>| \mathscr{P W}>$)

Similar expressions!

Non-Pert.

Pert.

$$
S(\omega)=\Sigma_{n}<0\left|\Theta^{+}\right| n><n \Theta \mid 0>\delta\left(\omega-E_{n}+E_{0}\right)
$$

| n > All eigenstates of the Hamiltonian,

Bound and continuum

Ab initio methods

that is described by a well-defined microscopic Hamiltonian H with A nucleon degrees of freedom and where the internal relative motion is treated correctly. If a method enables one to obtain the observable under consideration by solving the relevant quantum mechanical many-body equations, without any uncontrolled approximation, we consider it to be an ab initio method. Controlled approximations, however, are allowed. In fact a controlled approximation, e.g. a limited number of channels in a Faddeev calculation, can be increasingly improved up to the point that convergence is reached for the observable. Such a converged result we denote as a precise ab initio result. The comparison of precise ab initio results with nuclear data then allows an indisputable answer as to whether or not the chosen Hamiltonian appropriately describes the nuclear dynamics. Any uncontrolled approximation in the calculation would not lead to such a clear-cut conclusion. Quite naturally, precise ab initio results obtained with different ab initio methods but with the same Hamiltonian as input, have to agree and are often referred to as benchmark results.

- Solution of relevant many-body QM equation for a "chosen Hamiltonian" (the only input!)
- with approximations improvable in a controlled way $(\rightarrow$ convergence, error estimate \longrightarrow benchmark)

The basic ab initio methods

Few-body: As4
Few-body: $4<A<12,20,40$??

- Faddeev Yakubowski (FY)
- Diagonalization methods: (on different basis, e.g HH, gaussians...)

The basic ab initio methods

Few-body: A ≤ 4
Few-body: $4<A<12,20,40$??

\author{

- Faddeev Yakubowski (FY)
 - Diagonalization methods:
 - Green Function Monte Carlo (MC)
 - Coupled Cluster (CC) (on different basis, e.g HH, gaussians...)
}

The basic ab initio methods

Few-body: A ≤ 4
Few-body: $4<A<12,20,40$??

- Faddeev Yakubowski (FY)
- Diagonalization methods:
- Green Function Monte Carlo (MC) (on different basis, e.g HH, gaussians...)

No Core Shell Model (NCSM)
Effective Interaction Hyperspherical Harmonics (EIHH)

AB INITIO BOUND STATE CALCULATIONS

BE of ${ }^{4} \mathrm{He}$ (exp. 28.296 MeV)

TABLES

TABLE I. The expectation values (T) and (V) of kinetic and potential energis, the binding energies E_{6} in Mevt and the radius in fim.

Method	$\langle T\rangle$	(V)	E_{6}	$\sqrt{\left(r^{2}\right\rangle}$
FY	$102.39(5)$	$-18.33(10)$	$-25.9(5)$	$1.485(3)$
CRCGV	102.30	-18.20	-25.90	1.482
SIM	102.35	-18.27	-25.92	1.486
HH	102.44	-18.34	$-25.90(1)$	1.483
GFMC	$102.3(1.0)$	$-18.25(1.0)$	$-25.93(2)$	$1.490(5)$
NCSM	103.35	-129.45	$-25.80(20)$	1.485
EIHH	$100.8(9)$	$-126.7(9)$	$-25.94(10)$	1.486

from H.Kamada et al. (18 auhors 7 groups) PRC 64 (2001) 044001

Green Function Monte Carlo

Courtesy R.B.Wiringa

(no w.f. available!)

No core shell model

FIG. 1 (color online). Dependence of ${ }^{6} \mathrm{He}$ excitation energies on the size of the HO basis $N_{\text {max }} h \Omega$.
S. Baroni, P.Navratil and S. Quaglioni PRL 110, 022505 (2013)

The basic ab initio methods

Few-body: A ≤ 4
Few-body: $4<A<12,20,40$??

- Faddeev Yakubowski (FY)
- Diagonalization methods: - Coupled Cluster (CC) (on different basis, e.g HH, gaussians...)

No Core Shell Model (NCSM)
Effective Interaction Hyperspherical Harmonics (EIHH)

The basic ab initio methods

Few-body: A ≤ 4
Few-body: $4<A<12,20,40$??

- Faddeev Yakubowski (FY)
- Green Function Monte Carlo (MC)
- Diagonalization methods:
- Coupled Cluster (CC) (on different basis, e.g HH, gaussians...) No Core Shell Model (NCSM) Effective Interaction Hyperspherical Harmonics (EIHH)
- Faddeev Yakubowski (FY)
- HH Kohn-Variational P. (2 fragments)

Why are there so few methods for reactions? Why are they limited to $A=3,4 ?$

scattering many-body problem

In configuration space (Schroedinger)

Very difficult to match the asymptotic conditions in the solution of the coupled differential equations

scattering many-body problem

In momentum space (Lippmann-Schwinger)

Very difficult to cope with complicated poles in solving the coupled integral equations

Before reaching the

 asymptotic condition all channels are coupled!!!
Channels:

Today:

- FY solved for scattering states for $A=3(1+2,1+1+1)$
- FY solved for scattering states for A=4, however, only up to 3-body break up $(1+3,2+2,1+1+2$,

$$
\text { not yet } 1+1+1+1!)
$$

Bochum-Cracow school: (Gloeckle, Witala, Golak, Elster, Nogga...) Bonn-Lisabon-school (Sandhas, Fonseca, Sauer, Deltuva....) Config. Space: (Carbonell, Lazauskas...)

Alternative approach to 2+1 or $3+1$ scattering:

- Based on Kohn variational principle - Correct asymptotic conditions

Pisa School: Kievsky, Viviani, Marcucci...

The basic ab initio methods

Few-body: A ≤ 4
Few-body: $4<A<12,20,40$??

- Faddeev Yakubowski (FY)
- Green Function Monte Carlo (MC)
- Diagonalization methods:
- Coupled Cluster (CC) (on different basis, e.g HH, gaussians...) No Core Shell Model (NCSM) Effective Interaction Hyperspherical Harmonics (EIHH)
- Faddeev Yakubowski (FY)
- HH Kohn-Variational P.
(2 fragments)

The basic ab initio methods

Few-body: As4
Few-body: $4<A<12,20,40$??

- Faddeev Yakubowski (FY)
- Green Function Monte Carlo (MC)
- Diagonalization methods:
- Coupled Cluster (CC) (on different basis, e.g HH, gaussians...)

No Core Shell Model (NCSM)
Effective Interaction Hyperspherical Harmonics (EIHH)

- Faddeev Yakubowski (FY)
- HH Kohn-Variational P.
(2 fragments)
Integral Transforms Methods (IT)

Integral transform (IT)

$\Phi(\sigma)=\int d \omega K(\omega, \sigma) S(\omega)$

One IS NOT able to calculate S(ω) (the quantity of direct physical meaning) but IS able to calculate $\Phi(\sigma)$

Integral transform (IT)

$\Phi(\sigma)=\int d \omega \quad K(\omega, \sigma) S(\omega)$

 One IS NOT able to calculate S(ω)
 (the quantity of direct physical meaning)
 but IS able to calculate © (σ)

In order to obtain $S(\omega)$ one needs to invert the transform Problem:
Sometimes the "inversion" of $\mathbb{\Phi}(\sigma)$ may be problematic

Suppose we want a spectral function S(ω)

$\left.S(\omega)=\sum_{n}|\langle n| \Theta| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{n}+E_{0}\right)$

$$
\Phi(\sigma)=\int S(\omega) K(\omega, \sigma) d \omega=
$$

1) integrate in da using delta function

$$
\begin{aligned}
& \Phi(\sigma)=\Sigma_{n} K\left(E_{n}-E_{0_{0}}, \sigma\right)<0\left|\Theta^{+}\right| n><n|\Theta| 0> \\
& \quad=\Sigma_{n}<0\left|\Theta^{+} K\left(H-E_{0}, \sigma\right)\right| n><n|\Theta| 0> \\
& \text { 2) Use } \quad \Sigma_{n}|n><n|=I \\
& \Phi(\sigma)=
\end{aligned}
$$

The calculation of ANY transform seems to require, in principle, only the knowledge of the ground state! However,
$\mathrm{K}\left(\mathrm{H}-\mathrm{E}_{0}, \sigma\right)$ can be quite a complicate operator.
(I) $(\sigma)=\langle 0| \Theta^{+} \mathrm{K}\left(H-\mathrm{E}_{0}, \sigma\right) \Theta|0\rangle$

The calculation of ANY transform seems to require, in principle, only the knowledge of the ground state! However,
$\mathrm{K}\left(\mathrm{H}-\mathrm{E}_{0}, \sigma\right)$ can be quite a complicate operator. So, which kernel is suitable for calculation of this?
(11) $(\sigma)=\langle 0| \Theta^{+} K\left(H-E_{0}, \sigma\right) \Theta|0\rangle$

One familiar example: sum rules!

Sum rules are a kind of "Moment transform"

$$
\mathbf{K}(\boldsymbol{\omega}, \sigma)=\boldsymbol{\omega}^{\sigma} \text { with } \sigma \text { integer }
$$

One familiar example: sum rules!

Sum rules are a kind of "Moment transform"

$$
K(\omega, \sigma)=\omega^{\sigma} \text { with } \sigma \text { integer }
$$

To obtain S(ω) the inversion of the transform is equivalent to the reconstruction of $S(\omega)$ by its moments (theory of moments)

One familiar example: sum rules!

Sum rules are a kind of "Moment transform"

$$
\mathbf{K}(\boldsymbol{\omega}, \sigma)=\omega^{\sigma} \text { with } \sigma \text { integer }
$$

To obtain S(ω) the inversion of the transform is equivalent to the reconstruction of $S(\omega)$ by its moments (theory of moments)
however, $\mathbb{\Phi}(\sigma)$ may be ∞ for some $\sigma>\bar{\sigma}!$

Another common example:

The Laplace Kernel:

$$
\Phi(\sigma)=\int e^{-\omega \sigma} S(\omega) d \omega=\langle 0| \Theta^{+} e^{i\left(H-E_{0}\right) \sigma} \Theta|0\rangle
$$

The Laplace Kernel:

$$
\Phi(\sigma)=\int \mathrm{e}^{-\omega \sigma} \mathrm{S}(\omega) \mathrm{d} \omega=\langle 0| \Theta^{+} \mathrm{e}^{\mathrm{i}\left(H-E_{0}\right)(\mathrm{i} \sigma)} \Theta|0\rangle
$$

In QCD

The Laplace Kernel:

$$
\Phi(\sigma)=\int \mathrm{e}^{-\omega \sigma} \mathrm{S}(\omega) \mathrm{d} \omega=\langle 0| \Theta^{+} \mathbf{e}^{-\left(H-E_{0}\right) \tau} \Theta|0\rangle
$$

In Condensed Matter Physics:
In Nuclear Physics:
In QCD

$$
\sigma=\tau=\text { it imaginary time! }
$$

(1) (τ) is calculated with Monte Carlo Methods

The Laplace Kernel:

$$
\Phi(\sigma)=\int \mathrm{e}^{-\omega \sigma} \mathrm{S}(\omega) \mathrm{d} \omega=\langle 0| \Theta^{+} \mathbf{e}^{-\left(H-E_{0}\right) \tau} \Theta|0\rangle
$$

In Condensed Matter Physics:
In Nuclear Physics:

> In QCD

$$
\sigma=\tau=i t \text { imaginary time! }
$$

(1) (τ) is calculated with Monte Carlo Methods and then inverted with methods based on Bayesian theorem (MEM)

$$
\Phi(\sigma)=\int d \omega \quad e^{-\omega \sigma}
$$

It is well known that the numerical inversion of the Laplace Transform can be problematic!

Illustration of the problem:

Illustration of the problem:

Illustration of the problem:

"Selected Topics in Nuclear and Atomic Physics", Fiera di Primiero, Oct.1-6, 2017

In fact:

$$
\text { (II) }(\sigma)=\int d \omega K(\omega, \sigma) S(\omega)
$$

In fact:

$$
\Phi(\sigma)=\int d \omega K(\omega, \sigma) S(\omega)
$$

$$
\Phi(\sigma)=\int d \omega K(\omega, \sigma) S(\omega)
$$

$\Phi(\sigma)+\Delta \Phi(v)=\int d \omega K(\omega, \sigma)[S(\omega)+A \sin (v \omega)]$

$$
\Phi(\sigma)=\int d \omega K(\omega, \sigma) S(\omega)
$$

$\Phi(\sigma)+\Delta \Phi(v)=\int d \omega K(\omega, \sigma)[S(\omega)+A \sin (v \omega)]$

independently on the amplitude \mathbf{A} of the error!
a "good" Kernel has to satisfy two requirements

1) one must be able to calculate the integral transform
2) one must be able to invert the transform minimizing uncertainties

Which is the best kernel?

The δ-function!

What would be the "perfect" Kernel?

the delta-function!

in fact

$$
\Phi(\sigma)=S(\sigma)=\int \delta(\omega-\sigma) S(\omega) d \omega
$$

... but what about a representation of the 8-function?

The Lorentzian kernel:

Illustration of requirement N.1: one can calculate the integral transform

$$
K(\omega, \sigma)=\sigma_{2} / \pi\left[\left(\omega-\sigma_{1}\right)^{2}+\sigma_{2}^{2}\right]^{-1}
$$

Is equivalent to $\quad K(\omega, \sigma)=\sigma_{I} / \pi(\omega-\sigma)^{-1}\left(\omega+\sigma^{*}\right)^{-1}$
with σ complex: $\sigma=\sigma_{1}+i \sigma_{2}=\sigma_{R}+i \sigma_{I}$

(1) $\left(\sigma_{R}, \sigma_{I}\right)=\sigma_{I} / \pi \int\left[\left(\omega-\sigma_{R}\right)^{2}+\sigma_{I}^{2}\right]^{-1} S(\omega) d \omega$

Remember!

main point of the LIT:

Schrödinger-like equation with a source

mbin point of the LI[:

Schrödinger-like equation with a source

Theorem:
The $\tilde{\Psi}$ solution is unique and has bound state asymptotic conditions \longrightarrow one can apply bound state methods

Illustration of requirement N.2: one can invert the integral transform minimizing uncertainties

How can one easily understand why the inversion is much less problematic?

blurred, but still distinguishable

How can one easily understand why the inversion is much less problematic?

blurred, but still distinguishable also with errors!

How can one easily understand why the inversion is much less problematic?

Inversion: e.g. "regularization method" at fixed width

Numerical errors

LIT - Inversion

Inversion method : regularization method (from A.I N.Tikhonov, "Solutions of ill posed problems", Scripta series in mathematics (Winston,1977).

LTT - Inversion

Inversion method : regularization method (from A.I N.Tikhonov, "Solutions of ill posed problems", Scripta series in mathematics (Winston,1977).

1) Take the following ansatz for the response function

$$
S(\omega)=\sum_{m=1}^{M} \mathbf{c}_{m} \chi_{\mathrm{m}}\left(\omega, \alpha_{\mathrm{i}}\right)
$$

with given set of functions $\boldsymbol{\chi}_{m}$ and unknown coefficients \mathbf{C}_{m}

LIT - Inversion

Inversion method : regularization method (from A.I N.Tikhonov, "Solutions of ill posed problems", Scripta series in mathematics (Winston,1977).

1) Take the following ansatz for the response function

$$
S(\omega)=\sum_{m=1}^{M} \mathbf{C}_{\mathrm{m}} \chi_{\mathrm{m}}\left(\omega, \alpha_{\mathrm{i}}\right)
$$

with given set of functions $\boldsymbol{\chi}_{m}$ and unknown coefficients \mathbf{C}_{m}
2) Calculate: $\phi_{m}\left(\sigma_{R}\right)=\int d \omega \quad \chi_{m}\left(\omega, \alpha_{f}\right) L\left(\omega, \sigma_{R^{\prime}}, \sigma_{I}\right)$

LIT - Inversion

Inversion method : regularization method (from A.I N.Tikhonov, "Solutions of ill posed problems", Scripta series in mathematics (Winston,1977).

1) Take the following ansatz for the response function

$$
S(\omega)=\sum_{m=1}^{M} \mathbf{c}_{m} \chi_{m}\left(\omega, \alpha_{i}\right)
$$

with given set of functions $\boldsymbol{\chi}_{m}$ and unknown coefficients \mathbf{C}_{m}
2) Calculate: $\phi_{m}\left(\sigma_{R}\right)=\int d \omega \quad \chi_{m}\left(\omega, \alpha_{1}\right) L\left(\omega, \sigma_{R}, \sigma_{1}\right)$
3) Construct $\Phi\left(\sigma_{R}\right)=\sum_{m=1}^{M} \mathbf{c}_{m} \phi_{m}\left(\sigma_{R}\right)$

LIT - Inversion

Inversion method : regularization method (from A.I N.Tikhonov, "Solutions of ill posed problems", Scripta series in mathematics (Winston,1977).

1) Take the following ansatz for the response function

$$
S(\omega)=\sum_{m=1}^{M} \mathbf{c}_{m}
$$

with given set of functions $\boldsymbol{\chi}_{m}$ and unknown coefficients \mathbf{C}_{m}
2) Calculate: $\phi_{m}\left(\sigma_{R}\right)=\int d \omega \quad \chi_{m}\left(\omega, \alpha_{j}\right) L\left(\omega, \sigma_{R}, \sigma_{I}\right)$
3) Construct $\Phi\left(\sigma_{R}\right)=\sum_{m=1}^{M} \mathbf{c}_{m} \phi_{m}\left(\sigma_{R}\right)$
4) Determine \mathbf{c}_{m} and α_{i} by best fit on $\Phi\left(\sigma_{R}\right)$

Other remarks on the LIT

Perturbation induced inclusive reactions

Reaction cross sections are proportional to

$$
\left.\mathrm{S}(\omega)=\sum_{n}|\langle n| \Theta| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

Perturbation induced inclusive reactions

Reaction cross sections are proportional to

Perturbation induced inclusive reactions

Reaction cross sections are proportional to

$$
\left.\mathrm{S}(\omega)=\sum_{n}|\langle n| \Theta| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

$$
\left.=-1 / \pi \operatorname{Im}\left[\sum_{\mathrm{n}}<0\left|\Theta^{+}\right| \mathrm{n}><\mathrm{n}|\Theta| 0>\right]\left(\omega-\mathrm{E}_{\mathrm{n}}+\mathrm{E}_{0}+1 \varepsilon\right)^{-1}\right]
$$

Perturbation induced inclusive reactions

Reaction cross sections are proportional to

$$
\left.\mathrm{S}(\omega)=\sum_{n}|\langle n| \Theta| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

$$
\begin{aligned}
& \left.=-1 / \pi \operatorname{Im}\left[\sum_{n}<0\left|\Theta^{+}\right| n><n|\Theta| 0>\right]\left(\omega-E_{n}+E_{0}+1 \varepsilon\right)^{-1}\right] \\
& =1 / \pi \operatorname{Im}\left[\sum_{n}<0\left|\Theta^{+}\left(H-\omega-E_{0}-\imath \varepsilon\right)^{-1}\right| n><n|\Theta| 0>\right] \\
& =1 / \pi \operatorname{Im}\left[<0\left|\Theta^{+}\left(H-\omega-E_{0}-\imath \varepsilon\right)^{-1} \Theta\right| 0>\right]
\end{aligned}
$$

Perturbation induced inclusive reactions

Reaction cross sections are proportional to

$$
\left.\mathrm{S}(\omega)=\sum_{n}|\langle n| \Theta| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

$$
\begin{aligned}
& \left.=-1 / \pi \operatorname{Im}\left[\sum_{n}<0\left|\Theta^{+}\right| n><n|\Theta| 0>\right]\left(\omega-E_{n}+E_{0}+1 \varepsilon\right)^{-1}\right] \\
& =1 / \pi \operatorname{Im}\left[\sum_{n}<0\left|\Theta^{+}\left(H-\omega-E_{0}-\imath \varepsilon\right)^{-1}\right| n><n|\Theta| 0>\right] \\
& =1 / \pi \operatorname{Im}\left[<0\left|\Theta^{+}\left(H-\omega-E_{0}-\imath \varepsilon\right)^{-1} \Theta\right| 0>\right]
\end{aligned}
$$

Green F. $[\Pi(\omega)]$ with poles on the real axis !!

$$
\Phi\left(\sigma_{R}, \sigma_{I}\right)=\sigma_{I} / \pi \int\left[\left(\omega-\sigma_{R}\right)^{2}+\sigma_{I}^{2}\right]^{-1} S(\omega) d \omega<\infty
$$

$$
\begin{aligned}
& \Phi\left(\sigma_{R}, \sigma_{I}\right)=\sigma_{I} / \pi \int\left[\left(\omega-\sigma_{R}\right)^{2}+\sigma_{I}^{2}\right]^{-1} S(\omega) d \omega<\infty \\
& =\sigma_{I} / \pi \int d \omega\left[\left(\omega-\sigma_{R}\right)^{2}+\sigma_{I}^{2}\right]^{-1} \sum_{n}|<n| \Theta|0>|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Phi\left(\sigma_{R}, \sigma_{1}\right)=\sigma_{1} / \pi \int\left[\left(\omega-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1} S(\omega) d \omega<\infty \\
& =\sigma_{1} / \pi \int d \omega\left[\left(\omega-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1} \sum_{n}<n|\Theta| 0>\left.\right|^{2} \delta\left(\omega-E_{n}+E_{0}\right) \\
& \left.=\sigma_{1} / \pi \Sigma_{n}<0\left|\Theta^{+}\left[\left(H-E_{0}-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1}\right| n><n|\Theta| 0\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \Phi\left(\sigma_{R} \cdot \sigma_{1}\right)=\sigma_{1} / \pi \int\left[\left(\omega-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1} S(\omega) d \omega<\infty \\
& =\sigma_{1} / \pi \int d \omega\left[\left(\omega-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1} \sum_{n}|<n| \Theta|0>|^{2} \delta\left(\omega-\mathrm{E}_{\mathrm{n}}+\mathrm{E}_{0}\right) \\
& =\sigma_{1} / \pi \sum_{n}<0\left|\Theta^{+}\left[\left(H-\mathrm{E}_{0}-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1}\right| \mathrm{n}><\mathrm{n}|\Theta| 0> \\
& =\sigma_{1} / \pi<0\left|\Theta^{+}\left[\left(\mathrm{H}-\mathrm{E}_{0}-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{1}^{2}\right]^{-1} \Theta\right| 0>
\end{aligned}
$$

$$
\begin{aligned}
& \Phi\left(\sigma_{R} \sigma_{1}\right)=\sigma_{1} / \pi \int\left[\left(\omega-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1} S(\omega) d \omega<\infty \\
& =\sigma_{1} / \pi \int d \omega\left[\left(\omega-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1} \sum_{n}|<n| \Theta|0>|^{2} \delta\left(\omega-E_{n}+E_{0}\right) \\
& =\sigma_{1} / \pi \Sigma_{n}<0\left|\Theta^{+}\left[\left(H-E_{0}-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1}\right| n><n|\Theta| 0> \\
& =\sigma_{1} / \pi<0\left|\Theta^{+}\left[\left(H-E_{0}-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1} \Theta\right| 0> \\
& =-1 / \pi \operatorname{lm}\left[<0\left|\Theta^{+}\left(H-E_{0}-\sigma_{R}+\sigma_{1}\right)^{-1} \Theta\right| 0>\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Phi\left(\sigma_{R^{\prime}} \sigma_{1}\right)=\sigma_{1} / \pi \int\left[\left(\omega-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1} S(\omega) d \omega<\infty \\
& =\sigma_{1} / \pi \int d \omega\left[\left(\omega-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1} \sum_{n}|<n| \Theta|0>|^{2} \delta\left(\omega-E_{n}+E_{0}\right) \\
& =\sigma_{1} / \pi \Sigma_{n}<0\left|\Theta^{+}\left[\left(H-E_{0}-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1}\right| n><n|\Theta| 0> \\
& =\sigma_{1} / \pi<0\left|\Theta^{+}\left[\left(H-E_{0}-\sigma_{R}\right)^{2}+\sigma_{1}^{2}\right]^{-1} \Theta\right| 0> \\
& =-1 / \pi \operatorname{lm}\left[<0\left|\Theta^{+}\left(H-E_{0}-\sigma_{R}+\sigma_{1}\right)^{-1} \Theta\right| 0>\right]
\end{aligned}
$$

Of course, when $\sigma_{I}=\varepsilon \rightarrow 0 \Phi\left(\sigma_{R}, \varepsilon\right)$ coincides with

$$
\begin{aligned}
& \Phi\left(\sigma_{R}, \sigma_{\mathrm{I}}\right)=\sigma_{\mathrm{I}} / \pi \int\left[\left(\omega-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{\mathrm{I}}^{2}\right]^{-1} \mathrm{~S}(\omega) \mathrm{d} \omega<\infty \\
& =\sigma_{\mathrm{I}} / \pi \int \mathrm{d} \omega\left[\left(\omega-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{\mathrm{I}}^{2}\right]^{-1} \sum_{\mathrm{n}}|<\mathrm{n}| \Theta|0>|^{2} \delta\left(\omega-\mathrm{E}_{\mathrm{n}}+\mathrm{E}_{0}\right) \\
& =\sigma_{\mathrm{I}} / \pi \sum_{\mathrm{n}}<0\left|\Theta^{+}\left[\left(\mathrm{H}-\mathrm{E}_{0}-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{\mathrm{I}}^{2}\right]^{-1}\right| \mathrm{n}><\mathrm{n}|\Theta| 0> \\
& =\sigma_{\mathrm{I}} / \pi<0\left|\Theta^{+}\left[\left(\mathrm{H}-\mathrm{E}_{0}-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{\mathrm{I}}^{2}\right]^{-1} \Theta\right| 0> \\
& =-1 / \pi \operatorname{lm}\left[<0\left|\Theta^{+}\left(\mathrm{H}-\mathrm{E}_{0}-\sigma_{\mathrm{R}}+\mathrm{i} \sigma_{\mathrm{I}}\right)^{-1} \Theta\right| 0>\right]
\end{aligned}
$$

Of course, when $\sigma_{I}=\varepsilon \rightarrow 0 \Phi\left(\sigma_{R}, \varepsilon\right)$ coincides with However, in this case since $\Phi\left(\sigma_{R^{2}}, \sigma_{\mathrm{I}}\right)<\infty$ and σ_{I} is finite one is allowed to use bound state approaches,
i.e. represent H on b.s.

$$
\begin{aligned}
& \Phi\left(\sigma_{R}, \sigma_{\mathrm{I}}\right)=\sigma_{\mathrm{I}} / \pi \int\left[\left(\omega-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{\mathrm{I}}^{2}\right]^{-1} \mathrm{~S}(\omega) \mathrm{d} \omega<\infty \\
& =\sigma_{\mathrm{I}} / \pi \int \mathrm{d} \omega\left[\left(\omega-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{\mathrm{I}}^{2}\right]^{-1} \sum_{\mathrm{n}}|<\mathrm{n}| \Theta|0>|^{2} \delta\left(\omega-\mathrm{E}_{\mathrm{n}}+\mathrm{E}_{0}\right) \\
& =\sigma_{\mathrm{I}} / \pi \sum_{\mathrm{n}}<0\left|\Theta^{+}\left[\left(\mathrm{H}-\mathrm{E}_{0}-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{\mathrm{I}}^{2}\right]^{-1}\right| \mathrm{n}><\mathrm{n}|\Theta| 0> \\
& =\sigma_{\mathrm{I}} / \pi<0\left|\Theta^{+}\left[\left(\mathrm{H}-\mathrm{E}_{0}-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{\mathrm{I}}^{2}\right]^{-1} \Theta\right| 0> \\
& =-1 / \pi \operatorname{lm}\left[<0\left|\Theta^{+}\left(\mathrm{H}-\mathrm{E}_{0}-\sigma_{\mathrm{R}}+\mathrm{i} \sigma_{\mathrm{I}}\right)^{-1} \Theta\right| 0>\right]
\end{aligned}
$$

Of course, when $\sigma_{I}=\varepsilon \rightarrow 0 \Phi\left(\sigma_{R}, \varepsilon\right)$ coincides with However, in this case since $\Phi\left(\sigma_{R^{2}}, \sigma_{\mathrm{I}}\right)<\infty$ and σ_{I} is finite one is allowed to use bound state approaches,
i.e. represent H on b.s.

NO DISCRETIZATION OF THE CONTINUUM

$$
\mathrm{S}(\oplus)=-1 / \pi \operatorname{Im}\left[<0\left|\Theta^{+}\left(\mathrm{H}-\mathrm{E}_{0}+\imath \varepsilon\right)^{-1} \Theta\right| 0>\right]
$$

ε infinitesimal!

$$
\Phi\left(\sigma_{\mathrm{R}}, \sigma_{\mathrm{I}}\right)=\operatorname{Im}\left[<0\left|\Theta^{+}\left(\mathrm{H}-\mathrm{E}_{0}-\sigma_{\mathrm{R}}+\mathrm{i} \sigma_{\mathrm{I}}\right)^{-1} \Theta\right| 0>\right]
$$

One can use the Lanczos algorithm
to represent $\left(H-E_{0}-\sigma_{\mathrm{R}}+\mathrm{i}_{\mathrm{I}}\right)^{-1}$ as a continuum fraction

However, in this way one has the Lorentz transform, and one needs to invert it to obtain

However, in this way one has the Lorentz transform, and one needs to invert it to obtain

Because the kernel is a representation of the delta-function the inversion is much less ill posed

Many successful applications

See reports:

V. D. Efros, W.Leidemann, G.Orlandini, N.Barnea
"The Lorentz Integral Transform (LIT) method and its applications toperturbation induced reactions"
J. Phys G: Nucl. Part. Phys. 34 (2007) R459-R528
W.Leidemann, G.Orlandini
"Modern ab initio approaches and applications in few-nucleon physicswith $A \geq 4$ " Progress in Particle and Nuclear Physics 68 (2013) 158-214

Some results with LIT:

test on the Deuteron:

$R(\omega)$ is the longitudinal (e, e') response function

Phys Lett. B338 (1994) 130

Benchmark TEST on Triton:

$S(\omega)$ is the Dipole Photoabsorption Cross Section

Role of complete 4-body dynamics in the final scattering state
dotted: Plane Wave Impulse Approximation

Dashed
2-body force
Full: 2+3-body force
S.Bacca et al.,

Phys.Rev.Lett.102:162501 (2009)
Data: Saclay + Bates 1980's

Inclusive electron scattering cross section in the longitudinal channel

ω [MeV]

6-Body total photodisintegration

S.Bacca et al. PRL89(2002)052502

soft
mode

Theory:
LIT+ EIHH

classical GT mode

7-Body total photodisintegration with LIT method

S. Bacca et al. Phys.Lett. B603
(2004) 159-164

S. Bacca, et al.Phys.Rev.Lett. 111122502 (1913)

LIT +CC(SD) methods

N3LO EFT 2-body potential only

S. Bacca, et al.Phys.Rev.Lett. 111122502 (1913)

LIT +CC(SD) methods

N3LO EFT 2-body potential only

S. Bacca, et al.Phys.Rev.Lett. 111122502 (1913)

LIT +CC(SD) methods

N3LO EFT potential
S. Bacca et al. Phys. Rev. C 90, 064619 (2014)

The convergence of the LIT

The convergence of the LIT
The comparison with the L I Transformed data

Other kernels?

A Transform with a kernel suitable for Monte Carlo methods:

[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]
combination of Sumudu kernels:

$$
\begin{aligned}
& \left.K(\omega, \sigma, P)=N \sigma \frac{\left(e^{-\mu \omega / \sigma}-e^{-v \omega / \sigma}\right)}{\sigma}\right) \\
& v / \mu=b / a \quad v-\mu=\frac{\ln [b]-\ln [a]}{b-a} \quad b>a>0 \text { integer }
\end{aligned}
$$

A Transform with a kernel suitable for Monte Carlo methods:

[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]
combination of Sumudu kernels:

$$
\begin{aligned}
& K(\omega, \sigma, p)=N \sigma \frac{\left(e^{-\mu \omega / \sigma}-e^{-v \omega / \sigma}\right)}{\sigma} \frac{p}{\sigma} \frac{b-a}{b} \quad b>a>0 \text { integer }
\end{aligned}
$$

$$
\mathrm{K}(\omega, \sigma, \stackrel{\rightharpoonup}{ }) \longrightarrow \delta(\omega-\sigma)
$$

$$
p \longrightarrow \infty
$$

A Transform with a kernel suitable for Monte Carlo methods:

[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]
combination of Sumudu kernels:
$K(\omega, \sigma, P)=N \sigma \frac{\left(\mathrm{e}^{-\mu \omega / \sigma}\right.}{\sigma} \frac{\left.-\mathrm{e}^{-v \omega / \sigma}\right)}{\sigma}$
$=N \Sigma_{k}^{p}(-1)^{k}\binom{k}{\mathrm{p}} \mathrm{e}^{-\tau(\rho, \mathrm{k}, \sigma) \omega}$
Finite sum of Laplace Kernels!

A Transform with a kernel suitable for Monte Carlo methods:

[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]
combination of Sumudu kernels:

$$
\begin{gathered}
K(\omega, \sigma, P)=N \sigma \frac{\left(e^{-\mu \omega / \sigma}-\frac{e^{-v \omega / \sigma}}{\sigma}\right)}{\sigma} \\
=N \sum_{k}^{P}(-1)^{k}\binom{k}{p} e^{-\tau(P, k, \sigma) \omega} \\
\tau(P, k, \sigma)=\log (b / a)[P a /(b-a)+k] / \sigma
\end{gathered}
$$

Small width ---> large P ---> large imaginary time

Bosonic system: Liquid Helium

The transform is calculated with AFDMC and then inverted with MEM

Bosonic system: Liquid Helium

"Selected Topics in Nuclear and Atomic Physics", Fiera di Primiero, Oct.1-6, 2017

But what are other kernels suitable for diagonalization methods on finite norm basis functions

If we had to deal with a "confined" system one could represent H on bound states eigenfunctions |v>
$\langle 0| \Theta \Theta^{+} \mathrm{K}\left(\mathrm{H}-\mathrm{E}_{0}, \sigma\right) \Theta|0\rangle=\Phi(\sigma)=$
$\sum_{\mu \nu}\langle 0| \Theta^{+}|\mu\rangle\langle\mu| K\left(H_{\mu v}-E_{0}, \sigma\right)|v\rangle\langle v| \Theta|0\rangle$

If we had to deal with a "confined" system one could represent H on bound states eigenfunctions |v>
$\langle 0| \Theta^{+} \mathrm{K}\left(\mathrm{H}-\mathrm{E}_{0}, \sigma\right) \Theta|0\rangle=\Phi(\sigma)$
$\sum_{\mu \nu}\langle 0| \Theta^{+}|\mu\rangle\langle\mu| K\left(H_{\mu v}-E_{0}, \sigma\right)|v\rangle\langle v| \Theta|0\rangle$
After diagonalizing $\mathrm{H}_{\mu \nu}$ the transform would be simply

$$
\left.\Sigma_{\lambda} K\left(\varepsilon_{\lambda}-E_{0}, \sigma\right)|\langle\lambda| \Theta| 0\right\rangle\left.\right|^{2}=\Phi(\sigma)
$$

If we had to deal with a "confined" system one could represent H on bound states eigenfunctions |v>
$\langle 0| \Theta^{+} K\left(H-E_{0}, \sigma\right) \Theta|0\rangle=$
$\Sigma_{\mu \nu}\langle 0| \Theta^{+}|\mu\rangle\langle\mu| K\left(H_{\mu \nu}-E_{0}, \sigma\right)|v\rangle\langle v| \Theta|0\rangle$
After diagonalizing $\mathrm{H}_{\mu \nu}$ the transform would be simply

$$
\left.\Sigma_{\lambda} K\left(\varepsilon_{\lambda}-E_{0}, \sigma\right)|\langle\lambda| \Theta| 0\right\rangle\left.\right|^{2}
$$

(Up to convergence!)

For Lorentzian kernels

$$
\mathrm{K}_{\mathrm{L}}\left(\omega-\mathrm{E}_{0}, \sigma\right)=\sigma_{\mathrm{I}} / \pi\left[\left(\omega-\sigma_{\mathrm{R}}\right)^{2}+\sigma_{\mathrm{I}}^{2}\right]^{-1}
$$

$$
\left.\Sigma_{\lambda} K_{L}\left(\varepsilon_{\lambda}-E_{0}, \sigma\right)|\langle\lambda| \Theta| 0\right\rangle\left.\right|^{2}=\Phi(\sigma)
$$

Convolution of transition m.e. at discrete energies with Lorentzian functions (see S(ω) in RPA!)

However, a nucleus is NOT "confined"!

The nuclear \mathbf{H} has positive energy eigenstates and therefore, in general, CANNOT be represented on b.s. eigenfunctions |v>
(Continuum discretization approximation)

THE GOOD NEWS:

The representation of H on b.s. eigenfunctions |v > and therefore the calculation of the transform via

$$
\text { (II) }(\sigma)=\sqrt{\left.\sum_{\lambda} K\left(\varepsilon_{\lambda}-E_{0}, \sigma\right)|\langle\lambda| \Theta| 0\right\rangle\left.\right|^{2}}
$$

is allowed for specific kernels $\mathbf{K}(\boldsymbol{\omega}, \boldsymbol{\sigma})$!

No approximation!

Conditions required:

> 1) $\int S(\omega) d \omega<\infty \quad\left(\Rightarrow \int S(\omega) d \omega=\langle 0| \Theta^{+} \Theta|0\rangle\right)$
> 2) $\Phi(\sigma)=\int S(\omega) K(\omega, \sigma) d \omega<\infty$
3) $K(\omega, \sigma)$ is a real positive definite function of ω (or linear combinations)

In fact: if $K(\omega, \sigma)$ is a real positive definite function

$$
\mathcal{K}(\omega, \sigma)=\kappa^{*}(\omega, \sigma) \kappa(\omega, \sigma)
$$

In fact: if $K(\omega, \sigma)$ is a real positive definite function

$$
K(\omega, \sigma)=\kappa^{*}(\omega, \sigma) \kappa(\omega, \sigma)
$$

In fact: if $K(\omega, \sigma)$ is a real positive definite function

$$
\begin{aligned}
& \mathrm{K}(\omega, \sigma)=\mathrm{K}^{*}(\omega, \sigma) \mathrm{K}(\omega, \sigma) \\
& \text { (1) }(\sigma)=\langle 0| \Theta^{+} \kappa^{+}\left(H-E_{0}, \sigma\right) \kappa\left(H-E_{0}, \sigma\right) \Theta|0\rangle
\end{aligned}
$$

$|\widetilde{\Psi}\rangle$ has finite norm and therefore
can be expanded on b.s. functions !!

Moreover, since $\Theta|0\rangle$ has finite norm:

(see condition N.1)

... and after diagonalization:

$\left.\Phi(\sigma)=\Sigma_{\lambda} K\left(\varepsilon_{\lambda}-E_{0}, \sigma\right)|\langle\lambda| \Theta| 0\right\rangle\left.\right|^{2}$

Summarizing:

Any integral transform
 $$
\Phi(\sigma)=\int d \omega \quad K(\omega, \sigma) S(\omega)
$$

of a structure function $S(\omega)$ such that

1) $\quad \int S(\omega) d \omega<\infty$

And with a kernel $K(\omega, \sigma)$ such that
2) $K(\omega, \sigma)$ is a real positive definite function (or linear combination)
3) $\Phi(\sigma)=\int S(\omega) K(\omega, \sigma) d \omega<\infty$
... can be calculated by diagonalizing the H matrix represented on b.s. functions

(Up to convergence!)

$\left.\left.\Phi(\sigma)=\Sigma_{\lambda} K\left(\varepsilon_{\lambda}-E_{0}, \sigma\right)|\langle\lambda| \Theta| 0\right\rangle\right\rangle^{2}$

A side remark on the notation: in

$$
\Phi(\sigma)=\int d \omega \quad K(\omega, \sigma) S(\omega)
$$

σ can also indicate a set of parameters $\sigma_{1}, \sigma_{2} \ldots$

Let's remember:

$\Phi(\sigma)=\int d \omega K(\omega, \sigma) S(\omega)$

In order to obtain $S(\omega)$ one needs to invert the transform Problem:
Sometimes the "inversion" of $\Phi(\sigma)$ may be problematic

New Kernels?

What about "wavelets"?

continuous
 It has 2 parameters:
σ_{2} drives the frequency of the oscillation
σ_{1} drives the position of the window over the ω range
discrete

continuous

They combine the power of the Fourier Kernel (in detecting frequencies of oscillations) and the Lorentz Kernel
(in picking the information around specific ω ranges) It has 2 parameters:
σ_{1} drives the frequency of the oscillation
σ_{2} drives the position of the window over the ω range
discrete

continuous

Since wavelets are orthonormal functions in principle their inversion is straightforward!
[linear combination of $\Phi\left(\sigma_{1}, \sigma_{2}\right)$]

Integral transform (IT)

$$
\Phi(\sigma)=\int d \omega \quad K(\omega, \sigma) S(\omega)
$$

If $K(\omega, \sigma) \equiv K_{\sigma}(\omega)$ represents an orthogonal basis
$\Phi(\sigma)=\Phi_{\sigma}$ represent the coefficients of the expansion
then

$$
S(\omega)=\sum_{\sigma} \Phi_{\sigma} K_{\sigma}(\omega)
$$

A model study (discrete wavelets)

Our model S(ω)

A wavelet kernel

Model S(ω) and reconstructed from wavelet transform:

identical!

Another model study (narrow resonance, discrete wavelets)

Our model S(ω)
A wavelet kernel

$$
K\left(\omega, \sigma_{1}, \sigma_{2}\right)
$$

Model S(ω) and reconstructed from wavelet transform:

again identical!

Which information has been used to reconstruct S(ω) ???

Which information has been used to reconstruct S(ω) ???

 values of $K\left(\omega, \sigma_{1}, \sigma_{2}\right)$ with different widths$$
\sigma_{2}=1 / 2^{\mathrm{J}}, \quad \mathrm{~J}=1-5
$$

namely a lot of different resolutions up to $\sigma_{2}=0.03$!!!

This may not be possible with diagonalization in realistic cases!

Hp. on smallest "resolution" (low density of ε_{λ}):

Hp. on smallest "resolution" (higher density of ε_{λ}):

Acknowledgements

to all people who have taken part in the IT adventure over 20 years

- Victor Efros
- Winfried Leidemann
- Nir Barnea
- Sonia Bacca
- Sofia Quaglioni
- Ed Tomusiak
- The CC people (Gaute Hagen, Thomas Papenbrock, Mirko Miorelli...)
- The MC people (Francesco Pederiva, Alessandro Roggero

Thanks to the organizers for the invitation!!

0^{+}Resonance in ${ }^{4} \mathrm{He}$

Position at $\mathrm{E}_{\mathrm{R}}=20.1 \mathrm{MeV}$, (i.e. above the ${ }^{3} \mathrm{H}-\mathrm{p}$ threshold)
$\Gamma=270 \pm 70$ keV - Strong evidence in electron scattering

The 0^{+}resonance of ${ }^{4} \mathrm{He}$ is a typical isoscalar monopole excitation

Isoscalar monopole excitation operator

$$
S(q, \omega)=\sum_{n}|<n| \Theta(q)|0>|^{2} \delta\left(\omega-E_{n}+E_{0}\right)
$$

An interesting aspect of this resonance: its transition form factor as a "prism" of nuclear potentials

In S.Bacca et al. PRL 110042503 (2013), we have calculated $\mathrm{S}_{\mathrm{M}}(\mathrm{q}, \omega)$ via the Lorentz Integral Transform (LIT) method and looked in particular at the transition form factor for two different realistic potentials (N3LO+N2LO, AV18 +UIX)

Very large potential dependence !!!

S.Bacca et al. PRL 110042503 (2013)

When the first measurements of the 0^{+}resonance of ${ }^{4} \mathrm{He}$ appeared in 1965 (Frosch et al.) Werntz and Ueberall asked the interesting question: Is the 0^{+}resonance of ${ }^{4} \mathrm{He}$ a collective breathing mode?

Their simple breathing mode model (density scaling) impliesthe breathing mode exhausts the energy weighted sum rule
b) the transition density $\left.\left|<0^{+}{ }_{\mathrm{R}}\right| \Sigma_{\imath} \delta\left(r-r_{\imath}\right)|0\rangle\right|^{2}$ changes sign at $r=\left\langle r^{2}\right\rangle^{1 / 2}$

if the situation is of extreme collectivity all Surs Rules are 100\% "exhausted"

Sum Rules

$$
\begin{aligned}
& m_{0}=\int S(\omega) d \omega=\frac{1}{2}\langle 0|\{\Theta, \Theta\}|0\rangle \\
& m_{1}=\int S(\omega) \omega d \omega=\frac{1}{2}\langle 0|\left[\Theta,\left[\begin{array}{l}
(T+V) \\
= \\
m_{2}
\end{array}\right)=\int S\right]|0\rangle \\
& m^{2}(\omega) \omega^{2} d \omega=\frac{1}{2}\langle 0|\{\Theta, H\}\{H, \Theta\}|0\rangle
\end{aligned}
$$

etc.

Sum Rules

$$
\begin{aligned}
& m_{0}=\int S_{M}(q, \omega) d \omega=\frac{1}{2}\langle 0|\{M, M\}|0\rangle \\
& m_{1}=\int S_{M}(q, \omega) \omega d \omega=\frac{1}{2}\langle 0|[M,[H, M]]|0\rangle \\
& m_{2}=\int S_{M}(q, \omega) \omega^{2} d \omega=\frac{1}{2}\langle 0|\{M, H\}\{H, M\}|0\rangle \\
& \text { At low-q MODEL INDEPENDENT SUM RULE for local potentials } \\
& \text { etc. } \\
& \quad m_{1}=m_{1}(T)=\frac{2 A}{m}\left\langle r^{2}\right\rangle
\end{aligned}
$$

"Sum Rules provide useful yardsticks for measuring quantitatively the degree of collectivity of a given excited state"
D.Rowe in "Nuclear Collective motion" 1970

However, if the situation is

> m_{0} has to be considered to avoid emphasizing right o left background
"Sum Rules provide useful yardsticks for measuring quantitatively the degree of collectivity of a given excited state"
D.Rowe in "Nuclear Collective motion" 1970
"A typical isoscalar collective state exhausts something like 50% of m_{0} "
D.Rowe in "Nuclear Collective motion" 1970

What about the small nucleus ${ }^{4} \mathbf{H e}$?

Sum rules:

$\begin{gathered} q \\ {\left[\frac{\mathrm{MeV}}{\mathrm{c}}\right]} \end{gathered}$	$\left\|\mathrm{F}_{\mathcal{M}}(q)\right\|^{2}$	m_{0}	$\begin{gathered} m_{1} \\ {[\mathrm{MeV}]} \end{gathered}$	r_{0} $\%$	r_{1} $\%$	N3LO+N2LO AV18+UIX
50	0.00034	0.00063	0.021	53	34	
	0.00024	0.00064	0.018	38	28	
100	0.0042	0.0085	0.262	50	34	
	0.0031	0.0086	0.258	37	25	
200	0.0248	0.0683	2.42	36	22	
	0.0190	0.0710	2.48	27	16	
300	0.0297	0.129	5.89	23	11	
	0.0242	0.139	6.33	17	8	
400	0.0154	0.126	8.43	12	4	
	0.0141	0.143	9.39	10	3	

Sum rules:

b) the transition density $\left.\left|<0_{R}^{+}\right| \Sigma_{\imath} \delta\left(r-r_{\imath}\right)|0\rangle\right|^{2}$ changes sign at $r=\left\langle r^{2}\right\rangle^{1 / 2}$

Black: N3LO+N2LO
red: AV18+UIX

Conclusion

Is the 0^{+}resonance of the $\alpha-$ particle a "breathing mode" ???

Acknowledgements

to all people who have taken part in the IT adventure over about 20 years

- Victor Efros
- Winfried Leidemann
- Nir Barnea
- Sonia Bacca
- Sofia Quaglioni
- Ed Tomusiak
- The CC people (Gaute Hagen, Thomas Papenbrock, Mirko Miorelli...)
- The MC people (Francesco Pederiva, Alessandro Roggero

Thanks to the organizers for the invitation!!

Some examples:

■ "Moment" transform? YES (or NO!) the kernel ω^{σ} (σ integer)
is a real positive definite function, however, $\Phi(\sigma)$ may be ∞ for some σ

- Laplace transform? YES! the kernel Exp(- $\omega \sigma)$ is real and $\Phi(\tau)<\infty$ (in this case σ represents the imaginary time $\tau=i t$, is generally evaluated with MC methods)
- Stieltjes transform? YES! the kerne:l $1 /(\omega+\sigma)$
[V.D.Efros, Sov. J. Nucl.. Phys. 91, 949 (1985)]
- Lorentz transform? YES! the kernel: $\left[\left(\omega-\sigma_{1}\right)^{2}+\sigma_{2}^{2}\right]^{-1}$
V.D.Efros, W.Leidemann, G.O. , Phys Lett. B338 (1994) 130]
- Sumudu transform? YES! the kernel: $\left(\mathrm{e}^{-\mu \omega / \sigma 1} / \sigma_{1}-\mathrm{e}^{-v \omega / \sigma 1} / \sigma_{1}\right)^{\sigma 2}$
it has been evaluated with MC methods
[A.Roggero, F. Pederiva, G.O. , Phys. Rev. B 88, 115138 (2013)]

In general we have to do with

$$
\left.F_{a b}(\omega)=\sum_{n}^{f}<a|n><n| b\right\rangle \delta\left(E_{n}-\omega\right)
$$

Using $\lim \eta(x-\alpha-\imath \eta)^{-1}=\mathscr{P}(x-\alpha-\imath \eta)^{-1}+\imath \pi \delta(x-\alpha)$

$$
\eta \longrightarrow 0
$$

and closure $\quad \Sigma_{\mathrm{n}}|\mathrm{n}><\mathrm{n}|=\mathrm{I}$

$$
F_{a b}(\omega)=1 / \pi \operatorname{Im}\left\{\langle a| \frac{1}{(H-\omega-\eta)} \quad|b\rangle\right\}
$$

"Selected Topics in Nuclear and Atomic Physics", Fiera di Primiero, Oct.1-6, 2017

