Ab initio calculations of complex nuclei

Fiera di Primiero
26-30 September 2022

Vittorio Somà
CEA Saclay

Programme

1. Ab initio description of nuclei
2. Exact many-body methods
3. Expansion many-body methods for closed-shell nuclei
4. Expansion many-body methods for open-shell nuclei

Part 1

Ab initio description of nuclei

Diversity of nuclear phenomena

Ground state

Mass, size, superfluidity, ...

Strongly-correlated systems
Angular corr. \rightarrow Deformation
Pairing corr. \rightarrow Superfluidity
Quartet corr. \rightarrow Clustering

Spectroscopy

Excitation modes

Radioactive decays
$\beta, 2 \beta, \alpha, p, 2 p$, fission, ...

Exotic structures
Clusters, halos, ...

Several scales at play Nucleon momenta $\boldsymbol{\sim} \mathbf{1 0 0} \mathrm{MeV}$ Separation energies $\boldsymbol{\sim} \mathbf{1 0} \mathbf{~ M e V}$
Vibration modes $\boldsymbol{\sim} \mathbf{1} \mathrm{MeV}$
Rotation modes ~ 0.01-few MeV

Reaction processes

Fusion, transfer, knockout, ...

Which is the most appropriate theoretical description?

\odot Richness of nuclear phenomena propelled the formulation of many models

Which is the most appropriate theoretical description?

๑ Modern view: effective (field) theories

1. Separation of scales \rightarrow Definition of d.o.f.
2. Most general dynamics \rightarrow All allowed terms
3. Organisation \rightarrow Power counting
4. Truncation \& fit of interaction strengths
\Rightarrow Systematically improvable
\Rightarrow Internal consistency check

Possible choices as d.o.f.

Quarks \& gluons

Nuclei from lattice QCD

\odot First option: compute directly nuclear observables
\times Noise-to-signal ratio of A-nucleon correlation functions scales as $e^{A\left(M_{N}-\frac{3}{2} m_{\pi}\right) t}$
\checkmark Could provide highly useful benchmarks

\odot Second option: compute NN (\& NNN) potential
\times Unphysical pion masses
\times Difficult to extend to 3-body forces
\checkmark Extremely useful if extended to hyperons
[Ishii et al. 2007]

Which is the most appropriate theoretical description?

๑ Modern view: effective (field) theories

Which is the most appropriate theoretical description?

๑ Modern view: effective (field) theories

1. Separation of scales \rightarrow Definition of d.o.f.
2. Most general dynamics \rightarrow All allowed terms
3. Organisation \rightarrow Power counting
4. Truncation \& fit of interaction strengths

ᄃ Systematically improvable
\Rightarrow Internal consistency check

Possible choices as d.o.f.

Ab initio nuclear many-body problem

Goal: solve A-body Schrödinger equation (for any $A=Z+N$)
A-body wave function
many-nucleon Hamiltonian

A-body energies of ground and excited states

1. Model interactions between nucleons
a) Model the form of H
b) Fit coupling constants in H
c) Pre-process H
input -----------
\qquad
feedback
2. Solve many-body Schrödinger eq.
a) Formulate many-body approach
b) Implement, benchmark, optimise
c) Run calculations
\Rightarrow Difficult formal and computational tasks

- Automatised algebraic derivations
- Techniques from applied maths
- High-performance computing

One-boson exchange potentials

\bigcirc Yukawa potential: nuclear force mediated by massive spin-0 boson (the "mesotron" \rightarrow later, pion)

Yukawa potential

$$
V(r) \propto \frac{e^{-m r}}{r}
$$

$$
\mathrm{m} \sim 100 \mathrm{MeV} \leftarrow \mathrm{r} \sim 2 \mathrm{fm}
$$

Range \sim Compton wavelength of exchanged boson $\sim 1 / \mathrm{m}$
\odot OBE potentials: mesons with larger masses (ρ, ω, σ) can model ranges smaller than $1 / \mathrm{m}_{\pi}$

- Different spin/isospin structures generated
- Additional phenomenological terms

\checkmark High precision $\rightarrow \chi^{2} \approx 2$ in the 1980's, $\chi^{2} \approx 1$ in the 1990's x Hard repulsive core \rightarrow strong (short-range) correlations x Phenomenological component \rightarrow model dependence

Chiral effective field theory

\odot Chiral EFT: a systematic framework to construct $A \mathrm{~N}$ interactions ($A=2,3, \ldots$)

- Expansion around $\mathrm{Q} \sim \mathrm{m}_{\pi} \rightarrow$ d.o.f.: nucleons and pions
- Interactions organised according to power counting
- Many-body forces / currents consistently derived
- Theoretical error assigned to each order

Apply to the many-nucleon system (and propagate the theoretical error)

[Epelbaum et al. 2015, 2020]

Accuracy of chiral potentials

\odot Accuracy of chiral potentials steadily improving

Rms deviations approaching phenomenological approaches
\circ Ground-state energies \rightarrow rms deviation around $3 \mathrm{MeV}(\sim \mathbf{1 - 1 . 5 \%}$) (cf. $\sim 1 \mathrm{MeV}$ in energy density functionals)
\circ Charge radii \rightarrow rms deviation around $0.02 \mathrm{fm}(\sim \mathbf{0 . 5 - 1} \%)$
(similar in energy density functionals)

Part 2

Exact many-body methods

Many-body Schrödinger equation

© Goal: solve A-body Schrödinger equation (for any A)

A-body energies of ground and excited states

Other observables \leftarrow Expectation value of any operator

○ Only input

$$
H=H_{\mathrm{int}}=T_{\mathrm{int}}+V_{\mathrm{NN}}+V_{3 \mathrm{~N}}+\ldots
$$

- Given as a sum of many operators in momentum space (\otimes spin \& isospin)
- Transformed into basis of choice (e.g. harmonic oscillator)
- Typically truncated at $3 N$ level

Coordinate-space vs configuration-space methods

○ Coordinate-space methods

- Directly work with many-body wave function (e.g. Monte Carlo sampling)

Coordinate-space vs configuration-space methods

© Coordinate-space methods

- Directly work with many-body wave function (e.g. Monte Carlo sampling)
\circ Discretise the problem on a lattice \rightarrow Nuclear Lattice Effective Field Theory

Coordinate-space vs configuration-space methods

© Coordinate-space methods

- Directly work with many-body wave function (e.g. Monte Carlo sampling)
\circ Discretise the problem on a lattice \rightarrow Nuclear Lattice Effective Field Theory
\checkmark Flexible (any spatial configuration is accessible) + no intensive memory requirement
x Sign problem \rightarrow constrained choice of $H+$ expensive in processor time

Coordinate-space vs configuration-space methods

© Coordinate-space methods

- Directly work with many-body wave function (e.g. Monte Carlo sampling)
- Discretise the problem on a lattice \rightarrow Nuclear Lattice Effective Field Theory
\checkmark Flexible (any spatial configuration is accessible) + no intensive memory requirement
\times Sign problem \rightarrow constrained choice of $H+$ expensive in processor time
\bigcirc Configuration-space methods
- Expand eigenstates on a basis of known many-body states
\checkmark Universally applicable to any $H+$ amenable to controlled approximations
x Expensive in memory usage + constrained by the properties of basis states

One-body (= single-particle) basis

- Basic constituents: nucleons characterised by position, spin and isospin
- Single-nucleon states expressed as

$$
\left|\varphi_{k}\right\rangle=\left[\left|\varphi_{k}^{\text {space }}\right\rangle \otimes\left|\varphi_{k}^{\text {spin }}\right\rangle\right] \otimes\left|\varphi_{k}^{\mathrm{isospin}}\right\rangle
$$

- Standard choice for nuclear structure approaches

$$
\begin{array}{ll}
\left|\varphi_{k}^{\text {space }}\right\rangle=\left|n \ell m_{\ell}\right\rangle & \text { e.g., solutions of one-body harmon } \\
\left|\varphi_{k}^{\text {spin }}\right\rangle=\left|s m_{s}\right\rangle=\left|\frac{1}{2} m_{s}\right\rangle & \text { eigenstates of } \mathrm{s}^{2} \text { and } \mathrm{s}_{z} \text { with } \mathrm{s}=1 / 2 \\
\left|\varphi_{k}^{\text {isospin }}\right\rangle=\left|t m_{t}\right\rangle=\left|\frac{1}{2} m_{t}\right\rangle & \text { eigenstates of } \mathrm{t}^{2} \text { and } \mathrm{t}_{\mathrm{z}} \text { with } \mathrm{t}=1 / 2
\end{array}
$$

\odot Orbital angular momentum and spin are typically coupled

$$
\left|\varphi_{k}\right\rangle=\left|n\left(\ell \frac{1}{2}\right) j m ; \frac{1}{2} m_{t}\right\rangle=\sum_{m_{l}, m_{s}} c\left(\begin{array}{cc|c}
\ell & \frac{1}{2} & j \\
m_{l} & m_{s} & m
\end{array}\right)\left|n \ell m_{\ell}\right\rangle \otimes\left|\frac{1}{2} m_{s}\right\rangle \otimes\left|\frac{1}{2} m_{t}\right\rangle
$$

Many-body basis

\odot When dealing with fermions, many-body states have to be explicitly antisymmetrised
Antisymmetrisation operator $\mathcal{A}=\frac{1}{A!} \sum_{\pi} \operatorname{sgn}(\pi) P_{\pi}$
Direct product of A 1-body states

$$
\begin{aligned}
\left|\Phi^{A}\right\rangle & =\mathcal{A}\left\{\left|\varphi_{k_{1}}\right\rangle \otimes\left|\varphi_{k_{2}}\right\rangle \otimes \cdots \otimes\left|\varphi_{k_{A}}\right\rangle\right\} \\
& =\frac{1}{\sqrt{A!}} \sum_{\pi} \operatorname{sgn}(\pi) P_{\pi}\left(\left|\varphi_{k_{1}}\right\rangle \otimes\left|\varphi_{k_{2}}\right\rangle \otimes \cdots \otimes\left|\varphi_{k_{A}}\right\rangle\right) \\
& \equiv\left|k_{1} k_{2} \cdots k_{A}\right\rangle
\end{aligned}
$$

\circ Antisymmetric under exchange $P_{i j}\left|\cdots k_{i} \cdots k_{j} \cdots\right\rangle=\left|\cdots k_{j} \cdots k_{i} \cdots\right\rangle=-\left|\cdots k_{i} \cdots k_{j} \cdots\right\rangle$

- Encodes Pauli principle $\left|\cdots k_{i} \cdots k_{i} \cdots\right\rangle=0 \quad \rightarrow$ minimal intrinsic correlations
\odot Any antisymmetric state can be expanded in the Slater determinant basis

$$
\left|\Psi^{A}\right\rangle=\sum_{k_{1}>k_{2} \cdots>k_{A}} c_{k_{1} k_{2} \ldots k_{A}}\left|k_{1} k_{2} \cdots k_{A}\right\rangle \equiv \sum_{i} c_{i}\left|\Phi_{i}\right\rangle
$$

Configuration interaction

○ The strategy is the following

1. Select a one-body basis

$$
|\alpha\rangle \equiv\left|n \ell j m m_{t}\right\rangle
$$

2. Construct A-body basis of Slater determinants

$$
\left|\Phi_{i}\right\rangle \equiv\left|\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\}_{i}\right\rangle
$$

3. Convert Schrödinger equation into a matrix eigenvalue problem

$$
\begin{aligned}
& H\left|\Psi_{k}\right\rangle=E_{k}\left|\Psi_{k}\right\rangle \quad \rightarrow \text { expand }\left|\Psi_{k}\right\rangle=\sum_{i} C_{i}^{(k)}\left|\Phi_{i}\right\rangle \\
& \left\langle\Phi_{j}\right| \times\left[H \sum_{i} C_{i}^{(k)}\left|\Phi_{i}\right\rangle=E_{k} \sum_{i} C_{i}^{(k)}\left|\Phi_{i}\right\rangle\right] \\
& \sum_{i} \underbrace{\left\langle\Phi_{j}\right| H\left|\Phi_{i}\right\rangle}_{\equiv H_{j i}} C_{i}^{(k)}=E_{k} \sum_{i} C_{i}^{(k)} \underbrace{\left\langle\Phi_{j} \mid \Phi_{i}\right\rangle}_{=\delta_{i j}}
\end{aligned}>\left[\begin{array}{c}
\vdots \\
\ldots H_{j i} \\
\vdots \\
\vdots
\end{array}\right]\left[\begin{array}{c}
\vdots \\
C_{i}^{(k)} \\
\vdots
\end{array}\right]=E_{k}\left[\begin{array}{c}
\vdots \\
C_{j}^{(k)} \\
\vdots
\end{array}\right]
$$

Model space truncations

© Expansion on Slater determinants involves an infinite number of basis states

$$
\left|\Psi_{k}\right\rangle=\sum_{i=1}^{\infty} C_{i}^{(k)}\left|\Phi_{i}\right\rangle \quad \Rightarrow \quad\left|\Psi_{k}(D)\right\rangle=\sum_{i=1}^{D} C_{i}^{(k)}\left|\Phi_{i}\right\rangle
$$

obviously cannot store an infinite vector...
\Rightarrow truncations have to be necessarily introduced
© Two main ways of truncating the basis

- Full CI: truncate the one-body basis (at some maximum single-particle energy $\mathbf{e}_{\max }$)
- No-core shell model: cut the many-body basis (total number of HO excitation quanta $N_{\max }$)

$$
\text { Example: } N_{\max }=6
$$

Computational strategy

© Involved computational problem as A increases
© Key features

- One is only interested in a few low-lying eigenstates
- Hamiltonian matrix is sparse ($<0.01 \%$ of non-zeros at working values of $N_{\max }$)

© Computational solutions \& limitations
- Lanczos-type algorithms employed to extract first few eigenstates and associated eigenvalues
- Fast storage of non-zero matrix elements sets the limits of matrix dimensions
- Extensive use of parallelisation, matrix transformations, optimisation techniques, ...

CI dimensionality

\bigcirc "Back-of-the-envelope" estimate of matrix dimensions

- Case of Full CI (recall: truncation acts on the single-particle basis)
© How many Slater determinants can be built from a given number of single-particle states?
- Take A nucleons and n single-particle states
\Rightarrow Number of different possible Slater determinants $\quad\binom{n}{A}=\frac{n!}{(n-A)!A!}$
© Example: ${ }^{16} \mathbf{O}(Z=8, N=8)$ in 40 single-particle states
$\binom{40}{8}=\frac{40!}{(40-8)!8!} \approx 8 \cdot 10^{7} \quad$ for protons $\quad x \quad\binom{40}{8}=\frac{40!}{(40-8)!8!} \approx 8 \cdot 10^{7} \quad$ for neutrons
c) Total of $\mathrm{D}=6 \cdot 10^{15}$ Slater determinants
\Rightarrow Number of non-zero matrix elements ($N N$ only!) scales as D ${ }^{1.2} \rightarrow \sim 10^{18}$ non-zero entries
\Rightarrow Size in memory beyond EB \rightarrow well beyond current capabilities
\odot Current computational limits for the storage and diagonalisation of a large matrix
- Petascale machines: D ~ 10^{10} / / Exascale machines: D ~ 10^{12}

NCSM dimensionality

© No-core shell model

- More gentle scaling (recall: truncation $N_{\max }$ acts on the many-body basis)

Convergence w.r.t. $N_{\text {max }}$

\Rightarrow Computational limits quickly reached

NCSM dimensionality

Short-range correlations \& "low-momentum" interactions

\odot Why do we need to include such high values of $N_{\max } /$ large matrix dimensions?
\odot Nuclear interactions generate short-range correlations in many-body states

- Traditionally linked to "hard core" of one-boson exchange potentials
- Weaker but present in modern chiral interactions
\circ Short distance / high momenta / high energy \rightarrow large Hilbert space needed
\bigcirc Idea: use unitary transformations on \boldsymbol{H} to suppress these correlations

\rightarrow Decouple low- and high-momenta
\rightarrow Can work in small Hilbert space
\rightarrow Less correlated wave functions
\rightarrow Observables unchanged!

$$
U^{\dagger} H U U^{\dagger}|\Psi\rangle=E U^{\dagger}|\Psi\rangle
$$

$$
\ldots \quad \tilde{H}|\tilde{\Psi}\rangle=E|\tilde{\Psi}\rangle
$$

Short-range correlations \& "low-momentum" interactions

\odot Why do we need to include such high values of $N_{\max }$ / large matrix dimensions?
\odot Nuclear interactions generate short-range correlations in many-body states

- Traditionally linked to "hard core" of one-boson exchange potentials
- Weaker but present in modern chiral interactions
\circ Short distance / high momenta / high energy \rightarrow large Hilbert space needed
\bigcirc Idea: use unitary transformations on \boldsymbol{H} to suppress these correlations

\rightarrow Decouple low- and high-momenta
\rightarrow Can work in small Hilbert space
\rightarrow Less correlated wave functions
\rightarrow Observables unchanged!
\rightarrow Many-body forces generated
\leftrightarrows Similarity renormalisation group (SRG) transformation

A matter of resolution

[figures from K. Hebeler]

SRG transformation

SRG transformation
[Figures: R. Roth]

chiral NN

Entem \& Machleidt. N ${ }^{3}$ LO, 500 MeV

$$
J^{\pi}=1^{+}, T=0
$$

deuteron wave-function

SRG transformation
[Figures: R. Roth]

$$
\underset{\substack{\wedge=1.58 \mathrm{fm}^{-1}}}{\alpha=0.160 \mathrm{fm}^{4}}
$$

deuteron wave-function

SRG transformation

3B-Jacobi HO matrix elements

(E, i)

chiral NN+3N

$$
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=28 \mathrm{MeV}
$$

NCSM ground state ${ }^{\mathbf{3}} \mathrm{H}$

SRG transformation

SRG in A-body systems

\bigcirc Effect of induced many-body forces is non-negligible already in small systems

Initial ("genuine") 4-body forces assumed to be very small

- λ-dependence provides estimate of neglected induced 4-body contributions in ${ }^{4} \mathrm{He}$

SRG in A-body systems

\bigcirc Example: no-core shell model calculations of ${ }^{4} \mathbf{H e}$ and ${ }^{6} \mathrm{Li}$ ground-state energies

Flow parameters [fm^{-1}]

NCSM dimensionality

Normal-ordered two-body approximation

© From original Hamiltonian (normal-ordered w.r.t. the particle vacuum)...

$$
\begin{gathered}
H=\sum_{p q} t_{p q} c_{p}^{\dagger} c_{q}+\frac{1}{(2!)^{2}} \sum_{p q r s} v_{p q r s} c_{p}^{\dagger} c_{q}^{\dagger} c_{s} c_{r}+\frac{1}{(3!)^{2}} \sum_{p q r s t u} w_{p q r s t u} c_{p}^{\dagger} c_{q}^{\dagger} c_{r}^{\dagger} c_{u} c_{t} c_{s} \\
\\
\text { introduce Slater determinant }\left|\phi_{0}\right\rangle=\prod_{i=1}^{A} a_{i}^{\dagger}|0\rangle
\end{gathered}
$$

... to a Hamiltonian normal-ordered w.r.t. to a reference Slater determinant

$$
H=h^{(0)}+\sum_{p q} h_{p q}^{(1)}: a_{p}^{\dagger} a_{q}:+\frac{1}{2!} \sum_{p q r s} h_{p q r s}^{(2)}: a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}:+\frac{1}{6!} \sum_{p q r s t u} h_{p q r s t u}^{(3)}: a_{p}^{\dagger} a_{q}^{\dagger} a_{r}^{\dagger} a_{u} a_{t} a_{s}:
$$

© Define density matrix \& occupation numbers

$$
\rho_{p q} \equiv\left\langle\phi_{0}\right| a_{p}^{\dagger} a_{q}\left|\phi_{0}\right\rangle=n_{p} \delta_{p q} \quad \rightarrow \quad \begin{cases}n_{i}=1 & \text { holes } \\ n_{a}=0 & \text { particles }\end{cases}
$$

Normal-ordered two-body approximation

\odot Normal-ordered matrix elements

$$
\begin{aligned}
& h^{(0)}=\sum_{i} t_{i i} n_{i}+\frac{1}{2} \sum_{i j} v_{i j i j} n_{i} n_{j}+\frac{1}{6} \sum_{i j k} w_{i j k i j k} n_{i} n_{j} n_{k} \\
& h_{p q}^{(1)}=t_{p q}+\sum_{i} v_{p i q i} n_{i}+\frac{1}{2} \sum_{i j} w_{p i j q i j} n_{i} n_{j} \\
& h_{p q r s}^{(2)}=v_{p q r s}+\sum_{i} w_{p q i r s i} n_{i} \longleftarrow \begin{array}{c}
\text { Large part of the original 3N transferred } \\
\text { into effective lower-rank operators }
\end{array} \\
& h_{p q r s t u}^{(3)}=w_{\text {pqrstu }} \\
& \begin{array}{c}
\text { Normal-ordered 2-body approximation (NO2B) } \\
\rightarrow \text { Discard residual 3N operator }
\end{array}
\end{aligned}
$$

Normal-ordered two-body approximation

\odot Normal-ordered matrix elements

$$
\begin{aligned}
& h^{(0)}=\sum_{i} t_{i i} n_{i}+\frac{1}{2} \sum_{i j} v_{i j i j} n_{i} n_{j}+\frac{1}{6} \sum_{i j k} w_{i j k i j k} n_{i} n_{j} n_{k}= \\
& h_{p q}^{(1)}=t_{p q}+\sum_{i} v_{p i q i} n_{i}+\frac{1}{2} \sum_{i j} w_{p i j q i j} n_{i} n_{j}=,
\end{aligned}
$$

$$
h_{p q r s t u}^{(3)}=\text { wpqrstu }^{\text {pa }}
$$

Normal-ordered 2-body approximation (NO2B)

\rightarrow Discard residual 3N operator

- Benchmarked in light nuclei
- 1-3\% error
- Comparable to other errors
[Roth et al. 2012]

NCSM dimensionality

Importance truncation

© Not all matrix elements of H are equally relevant

- $N_{\max }$ cuts might not be the most efficient way of selecting important entries
\circ Is there a way of discarding a priori the most irrelevant entries for a given $N_{\text {max }}$?
\odot Importance truncation: prior to diagonalisation

1. Estimate the size of each entry upon a given criterion
2. Discard irrelevant entries (i.e., make the matrix even more sparse)
\Rightarrow Construct importance-truncated space from all basis states having $\left|\kappa_{\nu}\right| \geq \kappa_{\text {min }}$
\odot Required features:

- Estimate has be done with a cheap method
- Typical tool of choice: many-body perturbation theory
- In the limit of null threshold one must recover the original (exact) problem
- Smooth behaviour desirable in order to perform extrapolations

Importance truncation

๑ Example: no-core shell model calculation of ${ }^{16} \mathrm{O}$

- Smooth threshold dependence
- Extrapolation to un-truncated result
- Uncertainty quantification from fit
- Benchmarks possible for for small $N_{\max }$

Applications: oxygen isotopes

\odot First ab initio calculations with $\mathrm{NN}+3 \mathrm{~N}$ chiral interactions along the oxygen chain

- Converged results achieved up to ${ }^{24} \mathrm{O}$
- Unbound ${ }^{26} \mathrm{O}$ harder to compute in HO basis
- Role of "genuine" 3N forces evident

[Hergert et al. 2013]

Part 3

Expansion many-body methods for closed-shell nuclei

Correlation expansion methods: the idea

© The goal is always to solve $\quad H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle$
© Idea: write the exact ground-state wave function as

then expand and truncate Ω_{0}
\Rightarrow Before truncation, the expansion is exact
\Rightarrow After truncation, cost reduced from e^{N} to N^{α} with $\alpha \geq 4$

- Reference state
- Must be simple enough (such that it can be computed easily and exactly)
- Must be rich enough (such that it is a suitable starting point for the expansion)
- Obtained by

1) Splitting $H=H_{0}+H_{1}$
2) Solving for H_{0} (one-body operator) $H_{0}\left|\phi_{k}\right\rangle=\epsilon_{k}\left|\phi_{k}\right\rangle$

Mean field

\bigcirc Independent-particle picture
\circ One-body potential: $H_{0}=\sum_{i=1}^{A} h_{0}(i) \quad \rightarrow \quad H_{0}\left|\phi_{k}\right\rangle=\epsilon_{k}\left|\phi_{k}\right\rangle \quad \Rightarrow \quad \begin{gathered}h_{0}|\alpha\rangle=\varepsilon_{\alpha}|\alpha\rangle \quad \forall i \\ A \text {-body problem }\end{gathered}$

- Build Slater determinant $\left|\phi_{0}\right\rangle=\prod_{i=1}^{A} a_{\alpha_{i}}^{\dagger}|0\rangle \quad A$-body problem \quad A one-body problems
- Nucleons move independently inside a (one-body) potential well or mean field
\odot Does an independent-particle picture make any sense at all?
- Range of nuclear interaction \approx Inter-particle distance in nuclei $\sim 2 \mathrm{fm}$
- However, it looks like it actually does make sense

\checkmark Success of nuclear shell model

Effective or phenomenological models

Energy density functionals

$$
H^{\mathrm{eff}}\left|\Psi^{\mathrm{eff}}\right\rangle=E\left|\Psi^{\mathrm{eff}}\right\rangle
$$

Simplified w.f. Compensate for correlations in H
(Beyond) mean field Phenomenological fit
\checkmark Low cost \rightarrow Access whole nuclear chart
x Unclear how to improve (systematically)

Interacting shell model

$$
H^{\mathrm{eff}}\left|\Psi^{\mathrm{eff}}\right\rangle=E\left|\Psi^{\mathrm{eff}}\right\rangle
$$

Compensate for correlations in H
Full (CI) w.f., but in valence space
Phenomenological fit
\checkmark Very accurate locally in the nuclear chart
\times Limited predictive power + scaling

[Lenzi et al. 2010]

Hartree-Fock with ab initio interactions

OBE potentials

Expansion problematic: full diagonalisation needed

Chiral potentials

Expansion possible, but problem non-perturbative

SRG potentials

Expansion simple: even perturbation theory works!

Correlation expansion: perturbative approach

\odot Expansion of the exact wave function

$$
\begin{aligned}
& \text { Ref } \\
& \text { 1p1h } \\
& \text { 2p2h } \\
& \text { 3p3h }
\end{aligned}
$$

C) Perturbative methods: expansion coefficients computed independently
\odot Standard many-body perturbation theory (MBPT)

- Simple expressions for E at low orders
- Non-iterative calculation
- Polynomial scaling $O\left(N^{\alpha}\right) \rightarrow O\left(N^{4}\right)$ at MBPT(2) level

$$
E^{(2)}=\frac{1}{4} \sum_{a b}^{>\epsilon_{\mathrm{F}}} \sum_{i j}^{<\epsilon_{\mathrm{F}}} \frac{\langle a b| W|i j\rangle\langle i j| W|a b\rangle}{\left(\epsilon_{a}+\epsilon_{b}-\epsilon_{i}-\epsilon_{j}\right)}
$$

Many-body perturbation theory

\odot Convergence of MBPT series

- Convergence of the series can be tested up to high orders in small basis (recursive scheme)

\Rightarrow Importance of using the right reference
\Rightarrow Resummation schemes possible (e.g. Padé, eigenvector continuation, ...)

Many-body perturbation theory

\odot Reach

- Calculations currently possible up to mass $A \sim 100$ (and beyond)
© Benchmark
[Tichai et al. 2016]
- Accuracy competitive with coupled cluster calculations (non-perturbative and more costly)

$$
\operatorname{MBPT} E_{0}^{(2)}(\mathrm{O}) \quad E_{0}^{(2)}+E_{0}^{(3)}(\bullet)
$$

Correlation expansion: non-perturbative approach

\odot Expansion of the exact wave function

$$
\begin{aligned}
& \text { Ref } \\
& \text { 1p1h } \\
& \text { 2p2h } \\
& \text { 3p3h }
\end{aligned}
$$

\Rightarrow Perturbative methods: expansion coefficients computed independently
\Rightarrow Non-perturbative methods: expansion coefficients computed self-consistently

- Examples of non-perturbative approaches
- Coupled-cluster theory (CC)
\Rightarrow Exponential ansatz for the wave function $\quad\left|\Psi_{C C}\right\rangle=e^{T}|\Phi\rangle$
- In-medium similarity renormalisation group (IMSRG) \Rightarrow SRG evolution for H normal-ordered w.r.t. to a reference Slater determinant
\circ Self-consistent Green's function (SCGF) [next slide]

Green's function techniques

© The goal is to solve the A-body Schrödinger equation

$$
H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle
$$

○ Instead of working with the full A-body wave function $\left|\Psi_{k}^{A}\right\rangle$, rewrite the Schrödinger equation in terms of 1-, 2-, A-body objects $G_{1}=G, G_{2}, \ldots G_{\mathrm{A}}$ (Green's functions)
$\xrightarrow{\prime \prime} \rightarrow A-1$ coupled equations
© 1-, 2-, A-body Green's functions yield expectation values of 1-, 2-, A-body operators
$\xrightarrow{\prime} \rightarrow$ In practice, one usually needs 1- and / or 2-body GFs ($\sim 1-\& 2$-body density matrices)
© One-body Green's function obtained by solving Dyson equation (derived from Schrödinger eq.)

$$
G=G^{(0)}+G^{(0)} \Sigma G
$$

unperturbed Green's function
many-body effects contained in the self-energy Σ
© Bonus: one-body Green's function contains information about $A \pm 1$ excitation energy spectra
${ }^{\prime \prime} \rightarrow$ Spectral or Lehmann representation of the Green's function

Benchmarks

Oxygen binding energies

© Convergence of many-body results

- Different strategies to solve $\mathrm{H} \Psi=\mathrm{E} \Psi$
- Same input Hamiltonian (except lattice EFT)
- All methods agree within 5\%

\odot Physics of oxygen isotopes

- Energy trend reproduced by $2 \mathrm{~N}+3 \mathrm{~N}$ results
- Correct drip line only with 3N forces

Part 4

Expansion many-body methods for open-shell nuclei

Closed- vs. open-shell systems

\odot In practice: expand on Slater determinant basis \rightarrow particle-hole (ph) expansion

Ref. state varies with $N \& Z$

Closed-shell systems

Larger energy gap, excitations hindered, enhanced stability

Weakly correlated, clear ph hierarchy, expansion well defined

Nucleons partially fill levels below a magic number

Open-shell systems

Smaller ($\rightarrow 0$) energy gap, excitations enabled, lesser stability

Strongly correlated, no ph hierarchy, expansion ill defined

Breakdown of ph expansion

Closed-shell

- Breakdown of ph expansion evident already in MBPT(2) expressions
- Can be explicitly demonstrated by artificially decreasing the gap in ${ }^{16} \mathrm{O}$
gap

Open-shell

$$
\Delta E_{\mathrm{MBPT}}^{(2)}=-\frac{1}{4} \sum_{i j a b} \frac{\left|h_{i j a b}^{(2)}\right|^{2}}{e_{a}+e_{b}-e_{i}-e_{j}}=0
$$

Symmetry breaking

\bigcirc Idea: reopen gap via symmetry breaking

\bigcirc Which symmetries?
$\circ G_{\text {Ham }} \rightarrow$ symmetries of H usually dictated by QCD + general principles
$\circ G_{\mathrm{wf}} \rightarrow$ symmetries of w.f. depend on a given ansatz
$\circ G_{\mathrm{bas}} \rightarrow$ eigenfunctions of a given operator with certain symmetries (e.g. HO Hamiltonian)

Usually one chooses $G_{\text {Ham }}=G_{\text {wf }}=G_{\text {bas }}$ Symmetry breaking $\rightarrow G_{\text {Ham }} \neq G_{\text {wf }}$
\odot Why should it help?

- Variational space of w.f. is enlarged
- Degeneracy is lifted by deformation \rightarrow Particle-hole expansion again well defined
- We know it works from experience (collective model, energy density functionals)

Symmetry breaking

© Allowing w.f. to break symmetries is an efficient way to account for strong correlations
Order parameter $\quad\left\langle\Phi_{0}\right| Q\left|\Phi_{0}\right\rangle=q \equiv|q| e^{i \arg (q)}$

Which symmetry for which type of correlation?

Physical symmetry	Group	Correlations		
Rotational inv.	$\mathrm{SU}(2)$	Deformation		
Particle-number	$\mathrm{U}(1)_{\mathrm{N}} \times \mathrm{U}(1)_{\mathrm{Z}}$	Superfluidity	\quad	Singly open-shell \Rightarrow Sufficient to break U(1)
:---				
Doubly open-shell \Rightarrow Necessary to break SU(2)				

\checkmark Advantage: polynomially-scaling $\left(N^{\alpha}\right)$ method that can tackle strongly correlated systems
X Prices to pay:

1) $N_{\text {sym-breaking }}>N_{\text {sym-conserving }}$
2) Symmetries must be eventually restored in finite systems

Symmetry breaking

© Example: U(1)-breaking SCGF calculations

- Description deteriorates when going away from singly open-shell
- Correlation with (expected) deformation observed

Partition, expand, project

\odot Partition, then expand \& project

1. Compute symmetry-breaking ref. state

$$
\left|\Theta^{0}\right\rangle=\left|\Phi\left(q_{\min }\right)\right\rangle \quad \longrightarrow \quad H=H_{0}+H_{1}
$$

2. Expand in H_{1}
3. Restore broken symmetries
\bigcirc Partition \& project, then expand
4. Compute symmetry-breaking states [at many q]
5. Restore symmetries [+ q-mixing (PGCM)]

$$
\left|\Theta^{0}\right\rangle=\sum_{q} f(q) P|\Phi(q)\rangle \longrightarrow H=H_{0}+H_{1}
$$

3. Expand in H_{1}

Each step scales polynomially!

1. Constrained HFB

- Constrained HFB calculations
- Maps total energy surface (TES)
- Minimum at strongly deformed configuration
- TES soft along the octupole direction

1. Constrained HFB

2. Projected HFB

© Projected HFB calculations

- Projections favour deformed configurations
- Negative parity states accessed
- Provide input for computing PGCM state

${ }^{20} \mathrm{Ne}$

1. Constrained HFB

2. Projected HFB

3. PGCM

${ }^{20} \mathrm{Ne}$

1. Constrained HFB

2. Projected HFB

3. PGCM

${ }^{20} \mathrm{Ne}$

2. Projected HFB

3. PGCM

Excitation spectrum

Binding energy

\circ (Rotational) excitation spectrum emerges in both (symmetry-breaking and -conserving) approaches

- Symmetry-breaking approach achieves it at a much smaller cost
- Relative energies reproduced at PGCM level
- Dynamical correlations (PT correction) needed for absolute energies

Revisiting EDF and shell model

Energy density functionals

$$
H^{\mathrm{eff}}\left|\Psi^{\mathrm{eff}}\right\rangle=E\left|\Psi^{\mathrm{eff}}\right\rangle
$$

Simplified w.f.
Derive ab initio effective H
(Beyond) mean field

[Duguet et al. 2022]

Interacting shell model

$$
H^{\mathrm{eff}}\left|\Psi^{\mathrm{eff}}\right\rangle=E\left|\Psi^{\mathrm{eff}}\right\rangle
$$

Derive ab initio effective H
Full (CI) w.f., but in valence space

[Stroberg et al. 2021]

Ab initio nuclear chart

[Figure: B. Bally]
■ Stable
\square Atomic mass evaluation 2020
\square Ab initio 2010
\square Energy density functional (Gogny D1M)

Data taken from:
S. Hilaire and M. Girod, EPJA 33, 237 (2007)
M. Wang et al., Chin. Phys. C 45, 030003 (2021)
H. Hergert (private communications)

Ab initio nuclear chart

$\begin{array}{ll}\square & \text { Stable } \\ \square \text { Atomic mass evaluation } 2020 \\ & \text { Ab initio 2020 } \\ \square \text { Energy density functional (Gogny D1M) }\end{array}$

Data taken from:
S. Hilaire and M. Girod, EPJA 33, 237 (2007)
M. Wang et al., Chin. Phys. C 45, 030003 (2021)
H. Hergert (private communications)

