

**Fiera di Primiero** 26-30 September 2022 Vittorio Somà CEA Saclay





## Programme

- 1. Ab initio description of nuclei
- 2. Exact many-body methods
- 3. Expansion many-body methods for closed-shell nuclei
- 4. Expansion many-body methods for open-shell nuclei

## Part 1

Ab initio description of nuclei

## Diversity of nuclear phenomena

#### **Ground state**

Mass, size, superfluidity, ...



#### Radioactive decays

 $\beta$ ,  $2\beta$ ,  $\alpha$ , p, 2p, fission, ...



#### **Exotic structures**

Clusters, halos, ...





#### **Strongly-correlated systems**

Angular corr. → Deformation

Pairing corr. → Superfluidity

Quartet corr. → Clustering



#### Several scales at play

Nucleon momenta ~ 100 MeV

Separation energies ~ 10 MeV

Vibration modes ~ 1 MeV

Rotation modes ~ **0.01-few** MeV

#### **Spectroscopy**

**Excitation modes** 









#### **Reaction processes**

Fusion, transfer, knockout, ...



## Which is the most appropriate theoretical description?

#### • Richness of nuclear phenomena propelled the formulation of many models



- Motivated by regularities observed in data
- Lack of systematic character
- Different models not always consistent



Is a unified / consistent / systematic description possible?

# More reductionist/elementary/"fundamental" description

# Which is the most appropriate theoretical description?

Emergent phenomena amenable

to effective descriptions

#### • Modern view: effective (field) theories



- **1.** Separation of scales  $\rightarrow$  Definition of d.o.f.
- **2.** Most general dynamics  $\rightarrow$  All allowed terms
- **3.** Organisation → Power counting
- 4. Truncation & fit of interaction strengths



- **⇔** Systematically improvable
- **⇔** Internal consistency check



Possible choices as d.o.f.

Quarks & gluons

## Nuclei from lattice QCD

#### • First option: compute directly nuclear observables

- X Noise-to-signal ratio of A-nucleon correlation functions scales as  $e^{A\left(M_N-\frac{3}{2}m_\pi\right)t}$
- √ Could provide highly useful benchmarks



#### • Second option: compute NN (& NNN) potential

- Unphysical pion masses
- Difficult to extend to 3-body forces
- ✓ Extremely useful if extended to hyperons



# Which is the most appropriate theoretical description?

to

effective descriptions

#### Modern view: effective (field) theories



- **1.** Separation of scales  $\rightarrow$  Definition of d.o.f.
- **2.** Most general dynamics  $\rightarrow$  All allowed terms
- **3.** Organisation → Power counting
- 4. Truncation & fit of interaction strengths



- **⇔** Systematically improvable
- **□** Internal consistency check



Possible choices as d.o.f.

Quarks & gluons

**Nucleons** 

Rotation/vibration modes

# More reductionist/elementary/"fundamental" description

# Which is the most appropriate theoretical description?

Emergent phenomena amenable

to effective descriptions

#### Modern view: effective (field) theories



- **1.** Separation of scales  $\rightarrow$  Definition of d.o.f.
- **2.** Most general dynamics  $\rightarrow$  All allowed terms
- **3.** Organisation → Power counting
- 4. Truncation & fit of interaction strengths



- **⇔** Systematically improvable
- **⇔** Internal consistency check



Possible choices as d.o.f.

Quarks & gluons

**Nucleons** 

Rotation/vibration mode

# Ab initio nuclear many-body problem

Goal: solve *A*-body Schrödinger equation (for any A=Z+N)

*A*-body wave function

 $/ H |\Psi_k^A\rangle = E_k^A |\Psi_k^A\rangle$ 

many-nucleon Hamiltonian

A-body energies of ground and excited states

#### 1. Model interactions between nucleons

- a) Model the form of *H*
- b) Fit coupling constants in *H*
- c) Pre-process *H*

input

feedback

- 2. Solve many-body Schrödinger eq.
  - a) Formulate many-body approach
  - b) Implement, benchmark, optimise
  - c) Run calculations

#### **□** Difficult formal and computational tasks

- Automatised algebraic derivations
- Techniques from applied maths
- High-performance computing



# One-boson exchange potentials

• Yukawa potential: nuclear force mediated by massive spin-0 boson (the "mesotron" → later, pion)



Yukawa potential

$$V(r) \propto \frac{e^{-mr}}{r}$$

 $m \sim 100 \text{ MeV} \leftarrow r \sim 2 \text{ fm}$ 

Range ~ Compton wavelength of exchanged boson ~ 1/m

- $\odot$  **OBE potentials**: mesons with larger masses ( $\rho$ ,  $\omega$ ,  $\sigma$ ) can model ranges smaller than  $1/m_{\pi}$ 
  - Different spin/isospin structures generated
  - Additional phenomenological terms



- ✓ High precision →  $\chi^2 \approx 2$  in the 1980's,  $\chi^2 \approx 1$  in the 1990's
- X Hard repulsive core → strong (short-range) correlations
- ✗ Phenomenological component → model dependence



# Chiral effective field theory

- $\odot$  Chiral EFT: a **systematic** framework to construct *A*N interactions (*A*=2, 3, ...)
- $\circ$  Expansion around Q  $\sim$  m<sub> $\pi$ </sub>  $\rightarrow$  d.o.f.: nucleons and pions
- Interactions organised according to power counting
- Many-body forces/currents consistently derived
- Theoretical error assigned to each order



Apply to the many-nucleon system (and propagate the theoretical error)



MeV





## Accuracy of chiral potentials







#### Rms deviations approaching phenomenological approaches

- Ground-state energies → rms deviation around 3 MeV (~ 1-1.5%)
   (cf. ~1 MeV in energy density functionals)
- Charge radii → rms deviation around 0.02 fm (~ **0.5-1**%)

(similar in energy density functionals)

## Part 2

**Exact many-body methods** 

## Many-body Schrödinger equation

⊙ Goal: solve A-body Schrödinger equation (for any A)



A-body energies of ground and excited states

Other observables ← Expectation value of any operator

#### Only input

$$H = H_{\text{int}} = T_{\text{int}} + V_{\text{NN}} + V_{3\text{N}} + \dots$$

- Given as a sum of many operators in momentum space (⊗ spin & isospin)
- Transformed into basis of choice (e.g. harmonic oscillator)
- Typically truncated at 3*N* level

#### • Coordinate-space methods

• Directly work with many-body wave function (e.g. Monte Carlo sampling)



#### Coordinate-space methods

- Directly work with many-body wave function (e.g. Monte Carlo sampling)
- Discretise the problem on a lattice → Nuclear Lattice Effective Field Theory



#### Coordinate-space methods

- Directly work with many-body wave function (e.g. Monte Carlo sampling)
- Discretise the problem on a lattice → Nuclear Lattice Effective Field Theory
- ✓ Flexible (any spatial configuration is accessible) + no intensive memory requirement
- $\times$  Sign problem  $\rightarrow$  constrained choice of H + expensive in processor time

#### Coordinate-space methods

- Directly work with many-body wave function (e.g. Monte Carlo sampling)
- Discretise the problem on a lattice → Nuclear Lattice Effective Field Theory
- ✓ Flexible (any spatial configuration is accessible) + no intensive memory requirement
- $\times$  Sign problem  $\rightarrow$  constrained choice of H + expensive in processor time

#### • Configuration-space methods

• Expand eigenstates on a basis of known many-body states

- ✓ Universally applicable to any H + amenable to controlled approximations
- X Expensive in memory usage + constrained by the properties of basis states

## One-body (= single-particle) basis

- Basic constituents: nucleons characterised by **position**, **spin and isospin** 
  - Single-nucleon states expressed as

$$|\varphi_k\rangle = \left[|\varphi_k^{\text{space}}\rangle \otimes |\varphi_k^{\text{spin}}\rangle\right] \otimes |\varphi_k^{\text{isospin}}\rangle$$

Standard choice for nuclear structure approaches

$$|\varphi_k^{\text{space}}\rangle = |n \ell m_\ell\rangle$$

e.g., solutions of one-body harmonic oscillator

$$|\varphi_k^{\text{spin}}\rangle = |s\,m_s\rangle = |\frac{1}{2}\,m_s\rangle$$

eigenstates of  $s^2$  and  $s_z$  with  $s{=}1/2$ 

$$|\varphi_k^{\text{isospin}}\rangle = |t \, m_t\rangle = |\frac{1}{2} \, m_t\rangle$$

eigenstates of  $t^2$  and  $t_z$  with t=1/2

Orbital angular momentum and spin are typically coupled

$$|\varphi_k\rangle = |n\left(\ell\frac{1}{2}\right)j\,m; \frac{1}{2}\,m_t\rangle = \sum_{m_l,m_s} c\left(\begin{array}{cc} \ell & \frac{1}{2} \\ m_l & m_s \end{array} \middle| \begin{array}{c} j \\ m \end{array}\right) |n\,\ell\,m_\ell\rangle \otimes |\frac{1}{2}\,m_s\rangle \otimes |\frac{1}{2}\,m_t\rangle$$

## Many-body basis

• When dealing with fermions, many-body states have to be explicitly antisymmetrised

Antisymmetrisation operator  $\mathcal{A}=\frac{1}{A!}\sum_{\pi}\operatorname{sgn}(\pi)P_{\pi}$  Direct product of A 1-body states  $|\Phi^{A}\rangle=\mathcal{A}\left\{|\varphi_{k_{1}}\rangle\otimes|\varphi_{k_{2}}\rangle\otimes\cdots\otimes|\varphi_{k_{A}}\rangle\right\}$   $=\frac{1}{\sqrt{A!}}\sum_{\pi}\operatorname{sgn}(\pi)P_{\pi}\left(|\varphi_{k_{1}}\rangle\otimes|\varphi_{k_{2}}\rangle\otimes\cdots\otimes|\varphi_{k_{A}}\rangle\right)$  Slater determinants  $\equiv|k_{1}\,k_{2}\,\cdots\,k_{A}\rangle$ 

- $\circ$  Antisymmetric under **exchange**  $P_{ij} \mid \cdots \mid k_i \mid \cdots \mid k_j \mid \cdots \mid k_j \mid \cdots \mid k_i \mid \cdots \mid k_i \mid \cdots \mid k_j \mid \cdots \mid k_i \mid \cdots \mid k_j \mid \cdots \mid k_i \mid \cdots \mid k_j \mid$
- $\circ$  Encodes **Pauli principle**  $|\cdots k_i \cdots k_i \cdots \rangle = 0 \rightarrow$  minimal intrinsic correlations
- Any antisymmetric state can be expanded in the Slater determinant basis

$$|\Psi^A\rangle = \sum_{k_1 > k_2 \dots > k_A} c_{k_1 k_2 \dots k_A} |k_1 k_2 \dots k_A\rangle \equiv \sum_i c_i |\Phi_i\rangle$$

## Configuration interaction

- The strategy is the following
  - 1. Select a one-body basis

$$|\alpha\rangle \equiv |n \,\ell \,j \,m \,m_t\rangle$$

2. Construct A-body basis of Slater determinants

$$|\Phi_i\rangle \equiv |\{\alpha_1 \, \alpha_2 \dots \alpha_A\}_i\rangle$$

3. Convert Schrödinger equation into a matrix eigenvalue problem

$$H|\Psi_{k}\rangle = E_{k}|\Psi_{k}\rangle \longrightarrow \text{expand} \qquad |\Psi_{k}\rangle = \sum_{i} C_{i}^{(k)}|\Phi_{i}\rangle$$

$$\langle \Phi_{j}| \times \left[H \sum_{i} C_{i}^{(k)}|\Phi_{i}\rangle = E_{k} \sum_{i} C_{i}^{(k)}|\Phi_{i}\rangle\right]$$

$$\sum_{i} \underbrace{\langle \Phi_{j}|H|\Phi_{i}\rangle}_{\equiv H_{ji}} C_{i}^{(k)} = E_{k} \sum_{i} C_{i}^{(k)} \underbrace{\langle \Phi_{j}|\Phi_{i}\rangle}_{=\delta_{ij}} \longrightarrow \begin{bmatrix}\vdots\\ \vdots\\ C_{i}^{(k)}\\ \vdots\end{bmatrix} = E_{k} \begin{bmatrix}\vdots\\ C_{i}^{(k)}\\ \vdots\end{bmatrix}$$

## Model space truncations

• Expansion on Slater determinants involves an **infinite number of basis states** 

$$|\Psi_k\rangle = \sum_{i=1}^{\infty} C_i^{(k)} |\Phi_i\rangle \qquad \qquad |\Psi_k(D)\rangle = \sum_{i=1}^{D} C_i^{(k)} |\Phi_i\rangle$$

- Two main ways of truncating the basis
  - Full CI: truncate the one-body basis (at some maximum single-particle energy emax)
  - $\circ$  **No-core shell model**: cut the **many-body** basis (total number of HO excitation quanta  $N_{\text{max}}$ )



## Computational strategy

#### • Involved computational problem as A increases

- Key features
  - One is only interested in a **few low-lying eigenstates**
  - $\circ$  Hamiltonian matrix is **sparse** (< 0.01% of non-zeros at working values of  $N_{\text{max}}$ )



#### Computational solutions & limitations

- Lanczos-type algorithms employed to extract first few eigenstates and associated eigenvalues
- Fast storage of non-zero matrix elements sets the **limits of matrix dimensions**
- Extensive use of parallelisation, matrix transformations, optimisation techniques, ...

## CI dimensionality

- "Back-of-the-envelope" estimate of matrix dimensions
  - Case of Full CI (recall: truncation acts on the single-particle basis)
- How many Slater determinants can be built from a given number of single-particle states?
  - Take *A* nucleons and *n* single-particle states
    - ⇒ Number of different possible Slater determinants  $\binom{n}{A} = \frac{n!}{(n-A)! A!}$
- Example:  ${}^{16}$ O (Z=8, N=8) in 40 single-particle states

$$\binom{40}{8} = \frac{40!}{(40-8)! \, 8!} \approx 8 \cdot 10^7$$
 for protons  $x$   $\binom{40}{8} = \frac{40!}{(40-8)! \, 8!} \approx 8 \cdot 10^7$  for neutrons

- $\Rightarrow$  Total of D =  $6 \cdot 10^{15}$  Slater determinants
- ArrNumber of non-zero matrix elements (NN only!) scales as D<sup>1.2</sup> → ~ 10<sup>18</sup> non-zero entries
- Size in memory beyond EB → well beyond current capabilities
- Current computational limits for the storage and diagonalisation of a large matrix
  - $\circ$  Petascale machines: **D** ~ 10<sup>10</sup> // Exascale machines: **D** ~ 10<sup>12</sup>

## NCSM dimensionality

#### No-core shell model

 $\circ$  More gentle scaling (recall: truncation  $N_{\text{max}}$  acts on the many-body basis)



## NCSM dimensionality



## Short-range correlations & "low-momentum" interactions

- $\odot$  Why do we need to include such high values of  $N_{\text{max}}$  / large matrix dimensions?
- Nuclear interactions generate **short-range correlations** in many-body states
  - Traditionally linked to "hard core" of one-boson exchange potentials
  - Weaker but present in modern chiral interactions
  - Short distance / high momenta / high energy → large Hilbert space needed
- $\odot$  Idea: use unitary transformations on H to suppress these correlations



- → Decouple low- and high-momenta
- → Can work in small Hilbert space
- → Less correlated wave functions
- → Observables unchanged!

$$U^{\dagger}HUU^{\dagger}|\Psi\rangle = EU^{\dagger}|\Psi\rangle$$

$$\tilde{H}|\tilde{\Psi}\rangle = E|\tilde{\Psi}\rangle$$

## Short-range correlations & "low-momentum" interactions

- Why do we need to include such high values of  $N_{\text{max}}$  / large matrix dimensions?
- Nuclear interactions generate **short-range correlations** in many-body states
  - Traditionally linked to "hard core" of one-boson exchange potentials
  - Weaker but present in modern chiral interactions
  - Short distance / high momenta / high energy → large Hilbert space needed
- $\odot$  Idea: use unitary transformations on H to suppress these correlations



**⇔** Similarity renormalisation group (SRG) transformation

## A matter of resolution







[Figures: R. Roth]



#### chiral NN

Entem & Machleidt. N<sup>3</sup>LO, 500 MeV

$$J^{\pi}=1^+, T=0$$

#### deuteron wave-function



[Figures: R. Roth]





#### deuteron wave-function



[Figures: R. Roth]





## chiral NN+3N

 $N^3LO + N^2LO$ , triton-fit, 500 MeV

$$J^{\pi} = \frac{1}{2}^{+}, T = \frac{1}{2}, \hbar\Omega = 28 \text{ MeV}$$

## NCSM ground state <sup>3</sup>H



[Figures: R. Roth]



$$\alpha = 0.160 \, \text{fm}^4$$

$$J^{\pi} = \frac{1}{2}^{+}, T = \frac{1}{2}, \hbar\Omega = 28 \,\text{MeV}$$

## NCSM ground state <sup>3</sup>H



## SRG in *A*-body systems

• Effect of induced many-body forces is non-negligible already in small systems



- Initial ("genuine") 4-body forces assumed to be very small
- $\circ$   $\lambda$ -dependence provides estimate of neglected **induced 4-body** contributions in  ${}^{4}$ He

## SRG in *A*-body systems

### • Example: no-core shell model calculations of <sup>4</sup>He and <sup>6</sup>Li ground-state energies

Flow parameters [fm<sup>-1</sup>]





## NCSM dimensionality



## Normal-ordered two-body approximation

• From original Hamiltonian (normal-ordered w.r.t. the particle vacuum)...

$$H = \sum_{pq} t_{pq} c_p^{\dagger} c_q + \frac{1}{(2!)^2} \sum_{pqrs} v_{pqrs} c_p^{\dagger} c_q^{\dagger} c_s c_r + \frac{1}{(3!)^2} \sum_{pqrstu} w_{pqrstu} c_p^{\dagger} c_q^{\dagger} c_r^{\dagger} c_u c_t c_s$$



... to a Hamiltonian normal-ordered w.r.t. to a reference Slater determinant

$$H = h^{(0)} + \sum_{pq} h_{pq}^{(1)} : a_p^{\dagger} a_q : + \frac{1}{2!} \sum_{pqrs} h_{pqrs}^{(2)} : a_p^{\dagger} a_q^{\dagger} a_s a_r : + \frac{1}{6!} \sum_{pqrstu} h_{pqrstu}^{(3)} : a_p^{\dagger} a_q^{\dagger} a_r^{\dagger} a_u a_t a_s :$$

Define density matrix & occupation numbers

$$\rho_{pq} \equiv \langle \phi_0 | a_p^{\dagger} a_q | \phi_0 \rangle = n_p \, \delta_{pq} \quad \rightarrow \quad \begin{cases} n_i = 1 & \text{holes} \\ n_a = 0 & \text{particles} \end{cases}$$

## Normal-ordered two-body approximation

#### Normal-ordered matrix elements

$$h^{(0)} = \sum_{i} t_{ii} n_i + \frac{1}{2} \sum_{ij} v_{ijij} n_i n_j + \frac{1}{6} \sum_{ijk} w_{ijkijk} n_i n_j n_k$$

$$h_{pq}^{(1)} = t_{pq} + \sum_{i} v_{piqi} \, n_i + \frac{1}{2} \sum_{ij} w_{pijqij} \, n_i n_j$$

$$h_{pqrs}^{(2)} = v_{pqrs} + \sum_{i} w_{pqirsi} \, n_i$$

Large part of the original 3N transferred into effective lower-rank operators

$$h_{pqrstu}^{(3)} = w_{pqrstu}$$

Normal-ordered 2-body approximation (NO2B)

→ Discard residual 3N operator

## Normal-ordered two-body approximation

#### Normal-ordered matrix elements

$$h_{pqrstu}^{(3)} = w_{pqrstu}$$

Normal-ordered 2-body approximation (NO2B)

→ Discard residual 3N operator

### • Benchmarked in light nuclei

- 1-3% error
- Comparable to other errors



## NCSM dimensionality



### Importance truncation

### $\odot$ Not all matrix elements of H are equally relevant

- $\circ$   $N_{\text{max}}$  cuts might not be the most efficient way of selecting important entries
- $\circ$  Is there a way of **discarding** *a priori* the most irrelevant entries for a given  $N_{\text{max}}$ ?
- Importance truncation: prior to diagonalisation
  - 1. Estimate the size of each entry upon a given criterion
  - 2. Discard irrelevant entries (i.e., make the matrix even more sparse)
    - $\Rightarrow$  Construct **importance-truncated space** from all basis states having  $|\kappa_{\nu}| \geq \kappa_{\min}$

#### • Required features:

- Estimate has be done with a **cheap** method
  - Typical tool of choice: many-body perturbation theory
- In the limit of null threshold one must recover the original (exact) problem
  - Smooth behaviour desirable in order to perform extrapolations

### Importance truncation

⊙ Example: no-core shell model calculation of ¹6O

[Roth 2009]



- Smooth threshold dependence
- Extrapolation to un-truncated result
- Uncertainty quantification from fit
- $\circ$  Benchmarks possible for for small  $N_{\text{max}}$



## Applications: oxygen isotopes

### • First ab initio calculations with NN+3N chiral interactions along the oxygen chain



- Converged results achieved **up to <sup>24</sup>O**
- O Unbound 26O harder to compute in HO basis
- Role of "genuine" 3N forces evident



[Hergert et al. 2013]

### Part 3

Expansion many-body methods for closed-shell nuclei

## Correlation expansion methods: the idea

• The goal is always to solve  $H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle$ 

$$H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle$$

• Idea: write the exact ground-state wave function as

$$|\Psi_0^A
angle = \Omega_0 |\phi_0
angle$$
 wave operator / correlation operator reference state

□ Expansion in terms of particle-hole excitations

then **expand** and **truncate**  $\Omega_0$ 

- ⇔ Before truncation, the expansion is exact
- $\triangleleft$  After truncation, **cost reduced** from  $e^{\mathbb{N}}$  to  $\mathbb{N}^{\alpha}$  with  $\alpha \geq 4$

#### • Reference state

- Must be simple enough (such that it can be computed easily and exactly)
- Must be rich enough (such that it is a suitable starting point for the expansion)
- Obtained by

  - 1) Splitting  $H = H_0 + H_1$  2) Solving for  $H_0$  (one-body operator)  $H_0 |\phi_k\rangle = \epsilon_k |\phi_k\rangle$

### Mean field

### • Independent-particle picture

$$\circ$$
 One-body potential:  $H_0 = \sum_{i=1}^A h_0(i) \rightarrow H_0 |\phi_k\rangle = \epsilon_k |\phi_k\rangle$   $h_0 |\alpha\rangle = \epsilon_\alpha |\alpha\rangle \quad \forall i$ 
 $\circ$  Build Slater determinant  $|\phi_0\rangle = \prod_{i=1}^A a_{\alpha_i}^\dagger |0\rangle$  A-body problem A one-body problems

• Nucleons move independently inside a (one-body) potential well or *mean field* 

### • Does an independent-particle picture make any sense at all?

- Range of nuclear interaction ≈ Inter-particle distance in nuclei ~ 2 fm
- O However, it looks like it actually does make sense





- ✓ Fermi statistics helps out
- ✓ Large mean free path  $\lambda$

[Rios & Somà 2012; Lopez et al. 2014]

| $1p_{1/2}$ |    |
|------------|----|
| $1f_{5/2}$ |    |
| $2p_{3/2}$ | 28 |
| $1f_{7/2}$ |    |
| $1d_{3/2}$ | 20 |
| $2s_{1/2}$ |    |
| $1d_{5/2}$ |    |
| 1,5,7,     | 8  |
| $1p_{1/2}$ |    |
| $1p_{3/2}$ |    |
| $1s_{1/2}$ | 2  |
| 201/2      |    |

✓ Success of nuclear **shell model** 

# Effective or phenomenological models

### **Energy density functionals**

$$H^{\mathrm{eff}}|\Psi^{\mathrm{eff}}\rangle = E|\Psi^{\mathrm{eff}}\rangle$$

Simplified w.f.

Compensate for correlations in H

(Beyond) mean field

Phenomenological fit

- ✓ Low cost → Access whole nuclear chart
- Unclear how to improve (systematically)



### Interacting shell model

$$H^{\mathrm{eff}}|\Psi^{\mathrm{eff}}\rangle = E|\Psi^{\mathrm{eff}}\rangle$$

Compensate for correlations in H

Full (CI) w.f., but in valence space

Phenomenological fit

- ✓ Very accurate locally in the nuclear chart
- X Limited predictive power + scaling



### Hartree-Fock with ab initio interactions

### **OBE** potentials





Expansion **problematic**: full diagonalisation needed

### Chiral potentials





Expansion **possible**, but problem non-perturbative

### **SRG** potentials







Expansion **simple**: even perturbation theory works!

# Correlation expansion: perturbative approach

#### • Expansion of the exact wave function

➡ Perturbative methods: expansion coefficients computed independently

### • Standard many-body perturbation theory (MBPT)

- Simple expressions for *E* at low orders
- Non-iterative calculation
- Polynomial scaling  $O(N^{\alpha}) \rightarrow O(N^{4})$  at MBPT(2) level

$$E^{(2)} = \frac{1}{4} \sum_{ab}^{>\epsilon_{\rm F}} \sum_{ij}^{<\epsilon_{\rm F}} \frac{\langle ab|W|ij\rangle\langle ij|W|ab\rangle}{(\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j)}$$

## Many-body perturbation theory

### • Convergence of MBPT series

• Convergence of the series can be tested up to high orders in small basis (recursive scheme)



- □ Importance of using the right reference
- Resummation schemes possible (e.g. Padé, eigenvector continuation, ...)

# Many-body perturbation theory

#### Reach

 $\circ$  Calculations currently possible up to mass  $A \sim 100$  (and beyond)

### • Benchmark [Tichai et al. 2016]

• Accuracy competitive with coupled cluster calculations (non-perturbative and more costly)



## Correlation expansion: non-perturbative approach

#### • Expansion of the exact wave function

- ➡ Perturbative methods: expansion coefficients computed independently
- ➡ Non-perturbative methods: expansion coefficients computed self-consistently
- Examples of non-perturbative approaches
  - Coupled-cluster theory (CC)
    - $\Rightarrow$  Exponential ansatz for the wave function  $|\Psi_{CC}\rangle = e^T |\Phi\rangle$
  - In-medium similarity renormalisation group (IMSRG)
    - ⇒ SRG evolution for *H* normal-ordered w.r.t. to a reference Slater determinant
  - Self-consistent Green's function (SCGF) [next slide]

## Green's function techniques

• The goal is to solve the *A*-body Schrödinger equation

$$H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle$$

- Instead of working with the full A-body wave function  $|\Psi_k^A\rangle$ , rewrite the Schrödinger equation in terms of **1-, 2-, ...** A-body objects  $G_1$ =G,  $G_2$ , ...  $G_A$  (**Green's functions**)
  - $\rightarrow$  A-1 coupled equations
- ⊙ 1-, 2-, .... *A*-body Green's functions yield **expectation values of 1-, 2-, ....** *A*-body operators
  - In practice, one usually needs 1- and/or 2-body GFs (~ 1- & 2-body density matrices)
- One-body Green's function obtained by solving Dyson equation (derived from Schrödinger eq.)

$$G = G^{(0)} + G^{(0)} \Sigma G$$

unperturbed Green's function

many-body effects contained in the **self-energy**  $\Sigma$ 

- Bonus: one-body Green's function contains information about *A*±1 excitation energy spectra
  - Spectral or **Lehmann representation** of the Green's function

### Benchmarks





### Convergence of many-body results

- $\circ$  Different strategies to solve HY=EY
- Same input Hamiltonian (except lattice EFT)
- All methods agree within 5%

### • Physics of oxygen isotopes

- Energy trend reproduced by 2N+3N results
- Correct drip line only with 3N forces

[Hebeler et al. 2015]

### Part 4

Expansion many-body methods for open-shell nuclei

# Closed- vs. open-shell systems

● In practice: expand on Slater determinant basis → particle-hole (ph) expansion



Ref. state varies with N & Z









Nucleons **entirely** fill levels below a magic number



Closed-shell systems



Weakly correlated, clear ph hierarchy, expansion well defined Nucleons **partially** fill levels below a magic number



95%

Open-shell systems

Smaller (→ 0) energy gap, excitations enabled, lesser stability

**Strongly** correlated, no ph hierarchy, expansion **ill defined** 

## Breakdown of ph expansion

#### Closed-shell



$$\Delta E_{\text{MBPT}}^{(2)} = -\frac{1}{4} \sum_{ijab} \frac{|h_{ijab}^{(2)}|^2}{e_a + e_b - e_i - e_j} > 0$$

- Breakdown of ph expansion evident already in MBPT(2) expressions
- Can be explicitly demonstrated by artificially decreasing the gap in <sup>16</sup>O



### Open-shell







# Symmetry breaking

### • Idea: reopen gap via symmetry breaking



- Which symmetries?
  - $\circ$   $G_{Ham} \rightarrow$  symmetries of H usually dictated by QCD + general principles
  - $\circ$   $G_{\mathrm{wf}} \rightarrow \mathrm{symmetries}$  of w.f. depend on a given ansatz
  - $\circ$   $G_{\text{bas}} \rightarrow \text{eigenfunctions of a given operator with certain symmetries (e.g. HO Hamiltonian)}$

Usually one chooses  $G_{\text{Ham}} = G_{\text{wf}} = G_{\text{bas}}$ Symmetry breaking  $\rightarrow G_{\text{Ham}} \neq G_{\text{wf}}$ 

- Why should it help?
  - Variational space of w.f. is **enlarged**
  - Degeneracy is **lifted** by deformation → Particle-hole expansion again well defined
  - We know it works from **experience** (collective model, energy density functionals)

# Symmetry breaking

### • Allowing w.f. to break symmetries is an efficient way to account for strong correlations

Order parameter 
$$\langle \Phi_0 | Q | \Phi_0 \rangle = q \equiv |q| e^{i \arg(q)}$$





### Which symmetry for which type of correlation?

| Physical symmetry | Group                      | Correlations  |                                                 |
|-------------------|----------------------------|---------------|-------------------------------------------------|
| Rotational inv.   | SU(2)                      | Deformation   | Singly open-shell    □ Sufficient to break U(1) |
| Particle-number   | $U(1)_{N} \times U(1)_{Z}$ | Superfluidity | Doubly open-shell    Necessary to break SU(2)   |

✓ **Advantage:** polynomially-scaling ( $N^{\alpha}$ ) method that can tackle strongly correlated systems

1)  $N_{\text{sym-breaking}} > N_{\text{sym-conserving}}$ 

X Prices to pay:

2) Symmetries must be eventually **restored** in finite systems

# Symmetry breaking

### • Example: U(1)-breaking SCGF calculations

[Somà et al. 2021]

- Description deteriorates when going away from singly open-shell
- Correlation with (expected) deformation observed





### Partition, expand, project

### • Partition, then expand & project

1. Compute symmetry-breaking ref. state

$$|\Theta^0\rangle = |\Phi(q_{\min})\rangle \longrightarrow H = H_0 + H_1$$

- **2.** Expand in  $H_1$
- 3. Restore broken symmetries

### Partition & project, then expand

- **1.** Compute symmetry-breaking states [at many *q*]
- **2.** Restore symmetries [+ *q*-mixing (PGCM)]

$$|\Theta^0\rangle = \sum_{q} f(q) P |\Phi(q)\rangle \longrightarrow H = H_0 + H_1$$

**3.** Expand in  $H_1$ 

sHF Project [+ mix] **PGCM** Binding energy Expand Expand **dBMBPT** dCC Project Experiment



Each step scales polynomially!



### • Constrained HFB calculations

- Maps total energy surface (TES)
- Minimum at strongly deformed configuration
- TES soft along the octupole direction

### 20Ne





### • Projected HFB calculations

- o Projections favour deformed configurations
- Negative parity states accessed
- Provide input for computing PGCM state



### PGCM mixing

- $\circ$  Collective q.f.  $\rightarrow$  admixture of PHFB states
- Significant shape fluctuations
- Negative parities mix more deformations









-5.0

-5

0 x [fm] 5

0.00

[Frosini et al. 2022]













### **Excitation spectrum**

### Binding energy



- (Rotational) excitation spectrum emerges in both (symmetry-breaking and -conserving) approaches
- Symmetry-breaking approach achieves it at a much smaller cost
- **Relative** energies reproduced at PGCM level
- o Dynamical correlations (PT correction) needed for **absolute** energies

### Revisiting EDF and shell model

### **Energy density functionals**

$$H^{\mathrm{eff}}|\Psi^{\mathrm{eff}}\rangle = E|\Psi^{\mathrm{eff}}\rangle$$

Derive ab initio effective H

Simplified w.f.

(Beyond) mean field



[Duguet et al. 2022]

#### Interacting shell model

$$H^{\mathrm{eff}}|\Psi^{\mathrm{eff}}\rangle = E|\Psi^{\mathrm{eff}}\rangle$$

Derive ab initio effective H

Full (CI) w.f., but in valence space



[Stroberg et al. 2021]

### Ab initio nuclear chart



### Ab initio nuclear chart

