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In this second lecture I will provide a snapshot of different applications of Machine Learning
techniques in Nuclear Physics. Particularly, I will briefly go through some selected examples of
Machine Learning applications in Nuclear Theory and Experiments

Most of what I will say is taken from these two very comprehensive recent reviews

1. P. Bedaque et al, 4.1 for nuclear physics, Eur. Phys. J. A (2021) 57:100
2. A. Boehnlein et al., Machine Learning in Nuclear Physics, Rev. Mod. Phys. 94, 031003 (2022)




Machine Learning Applications in Nuclear Theory

Since the pioneering work of Gazula ef al. Gazula et al., NPA 540 1 (1992), who employed a feed forward

neural network to study global nuclear properties across the nuclear landscape, Machine Learning has
been used to predict
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Early Applications of ML 1n Nuclear Physics

In a pioneering paper, Gazula et al., NPA 540 1 (1992)

Employed the backpropagation algorithm to teach feedforward
ANNSs the existing data on nuclear stability and atomic masses to
study global nuclear properties across the nuclear landscape

Particularly, they contructed networks that learn and predict:
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hidden layer were considered

* Training set: 2226 entries from the
General Electric Chart of the Nuclides



Recently, Yiiskel et al., arXiv:2101.12117v2
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Have implemented a Multilayer Perceptron (MLP), to predict ground-state
binding energies of atomic nuclei.

They use two different MLP architectures with three and four hidden layers to study

their effects on the predictions

In the first one, they use as imput the proton and mass numbers of nuclei whereas
in the second they added pairing as additional input

They show that using appropriate MLP architectures and putting more physical
information in the input channels, MLP can make fast and reliable predictions for

binding energies of atomic nuclei
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Nuclear Charge Radu

In 2020, Wu et al., PLB 809 135743 (2020)

Trained a feed-forward neural network model to
calculate the nuclear charge radii

The model was trained with the input data set of proton
and neutron number Z, N, the electric quadrupole
transition strength B(E2) from the first excited 2+ state to
the ground state, together with the symmetry energy

Their model reproduced well not only the isotope
dependence of charge radii, but also the kinks of charge
radii at the neutron magic numbers N = 82 for Sn and Sm
isotopes, and also N = 126 for Pb isotopes

= Activation function: hyperbolic tangent

= Cost function: mean squared error

= Optimization algorithm: RMSProp method
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a-decay half-lives

Freitas & Clark, arXiv:1910.12345 have trained ANNS by a
standard backpropagation learning algorithm to model and predict

the systematics of a-decay of heavy and superheavy nuclei. They s
employ two kinds of network models: £
= Netl: Trained on the experimental half-life data for the selected 150
nuclear examples, yielding a purely statistical model of o decay
= Net2: Trained on the data set consisting of the differences between the
predictions of a given theoretical model of a decay (specifically,
effective liquid drop model), providing statistically derived corrections &
to this model =
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* TR b : c*. T w 'ﬁ:* (,;:
. 2 s wg,*' . }{ e 2 TS 9,‘; f*‘::ﬁ
\\//“\ /A e P Y I ST oL
XL @ S P T Ay o e ST
"4~ "‘. ’ - 80 920 - 100 110 - 100 120 - 140 160 180
.A'AVA VAt ‘ : :
VO‘" "{' LR 2 5. | Ry, B3
. 2 o x * 2 Ot Tk * Ts E
. * % ﬁ) * » o°
A A\ o gl L d) o) it T o
Input layer  First hidden Second hidden  Output layer :Z ik * * :: i * *
Iayer ]ﬂyel' 180 200 220 A240 260 280 300 7 8 QQa 10 11 12

o

|
N

-4

Net?2 results

Training set Test set
+ Texp +¥ Y 4 +  Texp
Tnet2 2 Q) - - 2 Tnet2
++@ & **v,:' 24 ¥ ¥
e 8 h o ¥
b O A PR s
&+ P K’ +§+ 04 * 2‘,‘
$reo0 ‘Pi*’tw;t«qi °
[ 2 b ¢ #,
8 42 acf 40 )
R e + y & X + *
+4‘*i¢‘*’ ' Hp, ¥ -2 Q& +Q %
P e & 28 3 + o0 &
+ ¥ & + ® +
8 R @ 8 —a ] 52
~ +
+ o
* -6
80 90 100 110 80 90 100 110
z z
Training set Test set
+ Texp % e 41 + Texp
Tnet2 {+ % o Tnet2 ~ *
e oL ® 2 ® i
P 4 of ¥ Q
g f;;: ¥ ?F: iw
&+ Py 0 } O
§ Pugr o o * ¥ #é ?&Bg + b
' +oia? B8 J 3 Yo
¢ :};;‘fgh%d_ + Q. o f - 5@ 3 ?
e oC = ) .
o @F Y #e 5 4 " O 57
+ T & e @ +
@2 g P _a & s
e ? +
T i T T -6 T T T T
100 120 140 160 180 100 120 140 160 180
N N
Training set Test set
+ Texp ﬁ’ + 4 +  Texp
Tnet2 ¢ + e A Tnet2 +
++ @ @ *o 2 b
? % + % o b
o i .
3 &+ Puoh :E 04 5 & -
$as o+ & TR B2 0% s
0094 a & & & -
y ) ) 5 .5
¢ Sepgites * e <& -2 045 ® B i
& R 4 FBed % Qo 4%
8 F G °Q & OO :
;'f¥ @ Hix =4 <) £ W
-~ +4
+
* —64

180 200 220 240 260 280 300
A

180 200 220 240
A

260 280 300



B-decay half-lives

Recently, Niu et al., PRC 99, 064307 (2019)

Have employed a Bayesian Neural Network (BNN) to predict nuclear B-decay
half-lives accurately and give reasonable uncertainty evaluations.

Known physics was explicitly embedded, including the ones described by the
Fermi theory of 3 decay, and the dependence of half-lives on pairing correlations
and decay energies.

Potential physics, which is not clear or even missing in nuclear models nowadays,
is learned by the BNN

B-decay half-lives of N=82 isotopes B-decay half-lives of N=126 isotopes
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Fission Yields

Last year, Qiao et al., PRC 103, 034621 (2021)

Applied a Bayesian neural network

(BNN) approach to learn existing

evaluated charge yields and infer the incomplete charge yields of 2*°U.

They found that a two-hidden-layer BNN is improved the results compared
to a single- hidden-layer BNN for overall performance.

Their results support the normal charge yields of *°U around Sn and Mo

isotopes.

The BNN evaluation results are quite satisfactory on distribution positions
and energy dependencies of fission yields
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Fusion Reaction Cross Sections
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Isotropic Cross Sections 1in Proton-induced Spallation Reactions

A few years ago Ma et al., CPC 44, 014104 (2020)

Proposed the Bayesian neural network (BNN) method to predict the
isotopic cross-sections in proton induced spallation reactions.

Learning from more than 4000 data sets of isotopic cross-sections from
19 experimental measurements and 5 theoretical predictions with the
SPACS parametrization, in which the mass of the spallation system
ranges from 36 to 238, and the incident energy from 200 MeV/u to
1500 MeV/u, they demonstrated that the BNN method can provide
good predictions of the residue fragment cross-sections in
spallation reactions
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Ground and Excited State Energies
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Lasseri et al., PRL 124, 162502 (2020) showed that deep neural
networks are capable of predicting the ground-state and excited
energies of more than 1800 atomic nuclei with an accuracy similar to the
one achieved by state-of-the-art nuclear energy density functionals (EDFs)
and with significantly less computational cost
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Ground and Excited State Energies

The first excited 2" energy states of nuclei give much substantial information related to the
nuclear structure. In the even—even nuclei, the first excited state is generally 2, and the

OO0 O0O0ODODDO

®

Output
Layer

— —+ —  Neural Network

.

energy values of them increase as the closed shells are approached. The nuclei’s excited @ weghts
levels can be investigated using theoretical nuclear models, such as the nuclear shell model. ()
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Layer
Very recently, Akkoyun et al., IJP 96, 1791 (2022) have used ANNS to determine the
energies of the first 2* states in the even—even nuclei in the nuclidic chart as a function of
Z and N numbers for the first time.
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Dripline Locations

Neufcourt et al., PRL 122, 062502 (2019) have
used global mass models and statistical machine
learning to make predictions, with quantified

levels of certainty, for bound nuclides between
Si and Ti.

= Using a Bayesian model averaging analysis
based on Gaussian-process-based
extrapolations they introduce the posterior
probability p,. for each nucleus to be bound
to neutron emission

» They found that extrapolations for drip-line
locations are consistent across the global
mass models used

* In particular, considering the current
experimental information and current global
mass models, they predicted that %8Ca has an
average posterior probability p,. =~ 76% to be
bound to two-neutron emission while the
nucleus %ICa is likely to decay by emitting a
neutron (p,, =~ 46%)
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Deuteron Properties

4 S state, Npjg =10 D state, Npjg =10
Keeble & Rios, PLB 809 135743 (2020) have used machine learning - — Exact | 0.06f
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Proton Radius
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Liquid-Gas Phase Transition

Very recently Wang et al.,, PRR 2 043202 (202() have shown that supervised
(BNN) & unsupervised (Autoencoders) machine-learning techniques can be
employed to study the nuclear liquid-gas phase transition. Based on the
experiment event-by-event charge multiplicity distribution, the neural
networks are capable of classifying the liquid and gas phases, and de-
termining the limiting temperature of the nuclear liquid-gas phase -
transition. They obtain a value 9.24 + 0.04 MeV, consistent with that e
obtained by the traditional caloric curve method
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Nuclear Energy Density Functionals

Very recently Wu et al.,, PRC 105, L031303 (2022) have employed the Kernel 20 . . . . .
Ridge Regression (KRR) machine learning model to build an energy :
density functional for self-bound nuclear systems for the first time < 18 _ )
* By learning the kinetic energy as a functional of the nucleon density alone, é 16 < 3 7
they have established a robust and accurate orbital-free density functional < 14 2 f "y i
for nuclei. u.lé R < ; ,f,kp e
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Neutron Star EoS
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Example of the input data (M(R) measurements and corresponding the ANN
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Nucleon Axial Form Factor From Neutrino Scattering

In 2019 Alvarez-Ruso et al.,, PRC 99, 025204 (2019) applied the Bayesian approach 175 . - - T p—
for feedforward neural networks with 1 hidden layer and 1-4 hidden neurons to ) :
the extract the nucleon axial form factor from the neutrino-deuteron-scattering data s
measured by the Argonne National Laboratory bubble-chamber experiment. This
framework allows to perform a model-independent determination of the axial form
factor from data. When the low 0.05 < Q? < 0.1 GeV? data are included in the o
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analysis, the resulting axial radius disagrees with available determinations. A large o
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Distribution of the ANL number of events and the best fits obtained for MLPs Best fits of the axial form factor obtained from the analysis

with M = 1-4 hidden units of the three data sets: BINO, BIN1, and BIN2



Extrapolation of ab-initio nuclear structure calculations

Recently, ANN have been employed to extrapolate the results of ab-initio nuclear structure calculations in finite

model spaces. Particularly:

Negoita et al., PRC 99, 054308 (2019) have used a feed-forward
ANN method for predicting the ground state energy and the
ground state point proton root-mean-squared radius of SLi
training the network with No-Core Shell Model (NCSM) results,
obtained in accessible harmonic oscillator (HO) basis spaces. They
showed that an ANN is able to predict correctly extrapolations of the
NCSM results to very large model spaces of size N, ~ 100.

5Li with Daejeon16

dataset Nm <10
Egs =-32.131(43) MeV

el ]

datasetN <12

E__=-32.093(21) MeV
gs

—_

count
QUIOUI CUOUI OUIOUI OUIOUT CUOWUIO

count
—_

dataset N <14
max
E,, =-32.066(11) MeV

count
—_

dataset N <16
max
Egs =-32.060(10) MeV

count
—_

dataset N <18
max
E,q =-32.061(4) MeV

count
—_—

layer hidden layer layer -32.2-32.15-32.1-32.05 -3

gs energy E,, (MeV)

* Similarly, Jiang et al., PRC 100, 054326 (2019) have also
employed an ANN to extrapolate the ground state energy and
radii of “He, °Li & 'O computed with the NCSM and the
coupled-cluster (CC) methods.

“He with NCSM+NNLO,
0.04 .
160 with CC+NNLO,,
v
0.03 4 —126F | ' ' '
D e —128+ +
" o R f--——-- ————— -
g 0.02 :xx x % -132p .
= I 6 8 10 12
max(Nmax)
0.01
0.00

—27.70 -27.65 =-27.60 -27.55 =27.50
Eq.s. (MeV)



Extrapolation of ab-initio nuclear structure calculations

Recently, LV, arXiv:2203.11792 has employed a feed-
forward ANN to extrapolate at large model spaces the
results of ab-initio hypernuclear NCSM calculations for
the A separation energy B, of the lightest hypernuclei,
obtained in accessible HO basis spaces using chiral NN,
NNN & YN interactions. A network with a single hidden
layer of eight neurons is enough to extrapolate correctly
the value of B, to model spaces of size N,,,,=100
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Hypernucleus ANN Prediction Experimental
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0.16 +£ 0.01
2.47 £ 0.03
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2.41 £ 0.04
1.33 £ 0.03

0.13 £ 0.05
2.157 £ 0.077
1.067 + 0.08

2.39 £ 0.05
0.984 + 0.05



Machine Learning Applications in Nuclear Experiments

During the last few years, Machine Learning techniques have been applied to the full chain of
experimentation including in particular:

= Desing of experiments

= Reconstruction & Analysis

In the next I will shortly go over some exampleses of these two applications



Experimental Design

Physics and detector simulations are critical
for both the initial design and the
optimization of detectors in nuclear physics
experiments. Detectors are usually
characterized by multiple parameters capable
of tuning: mechanics, geometry and optics of
each component

Detector design optimization can be a large
combinatorial problem characterized by
accurate and computationally expensive
simulations. In this context, ML offers different
optimization  strategies, spanning  from
reinforcement learning to evolutionary
algorithms

P —

Detector parameters

Cost constraintsand
detector-related
systematicuncertainties

Continuous
model (GAN,
VAE, local

surrogates) Nuisance

model

simulator |

Propagation,
multiple
scattering, hit
generation

Trajectory finder and
| construction of density map

Conceptual layout of an optimization pipeline for a

muon radiography apparatus



Reconstruction & Analysis: Charge Particle Tracking

At high luminosity, tracking suffers from track candidates that share
hits. This results in hits wrongly identified as “on-track” and
produces ghost tracks.

In high luminosity environments, the largest fraction of CPU time
& memory in tracking in a traditional analysis is spent on setting up
various filters at each measurement site.

The improvement in track seeding resulting from using ANN and
deep learning methods, yields substantially faster track
reconstruction speed.

One of the most common deep learning algorithms employed for
tracking pattern recognition are Convolutional Neural
Networks (CNN)

Machine learning algorithms used for background rejection
involve topological properties of tracks to isolate signal from
background
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Side view of hit patterns in the NeuLAND detector , created
by the interaction of one neutron with a kinetic energy of
600MeV



Reconstruction & Analysis: Calorimetry

Background rejection versus Signal efficiency
IMVA
H : ~ : ]

1 e —

The GlueX experiment at Jefferson Lab (Barsotti and Shepherd,
arXiv: 2002.09530v1) used ANN to reduce background in the
GlueX forward calorimeter for the detection of photons
produced in the decays of hadrons. of
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= The training was done on data using ®w-meson decays.
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= Energy deposition characteristics in the calorimeter such as S o6 :
shapes, size, and distribution were employed to discriminate ) 0.52_ %z::zgk:d)
between signal and background, where the background E
mostly originates from hadronic interactions that can be M%
difficult to distinguish from low energy photon interactions 03F
The ANN-based algorithm showed to be a powerful tool to o2
reconstruct neutral particles with high efficiency and to o_é;

provide substantial background rejection capability
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(Top) Performance of the eight different types of multi-variate analysis algorithms that were
tested. (Bottom) Classifier output distribution for the MLP when run on the background (red)
and signal (blue) training samples



Reconstruction & Analysis: Particle Identification

Particle identification (PID) is done with dedicated detectors
capable of identifying certain particle types, such as for example,
Cherenkov detectors largely used in modern nuclear
experiments for identifying charged particles like pions, kaons,
and protons corresponding to a wide range in momentum.

Cherenkov detectors are typically endowed with single photon
detectors and the particle type can be recognized by
classifying the corresponding detected hit pattern

= DeepRICH (Fanelli and Pomponi, Mach. Learn.: Sci.
Technol. 1 015010 (2020)) is a recently developed custom ar-

chitecture that combines Variational Auto-Encoders (VAE), B g
. . -10
CNN and ANN. The re-construction performance is fast due
to its implementation on GPUs that allow for parallel Example of features extracted by the CNN module from

n’s and K’s at 4 GeV/c (left) and 5 GeV/c (right). These

processing of batches of particles during the inference phase
features are then used to classify the particle



Reconstruction & Analysis: Particle Identification

In Derkach et al., NIMPRA A 952, 161804 2020, Generative Adversial
Networks (GAN) have been used to simulate the Cherenkov detector
response. This architecture predicts the multidimensional distribution of
the likelihood for particle identification produced by-passing low-level
details

Machine learning has been applied to design experimental observables
that are sensitive to jet quenching and parton splitting. CNN have been
used for instance to discriminate quark and gluon jets (Komiske et
al., JHEP 1, 1 2017). Different deep architectures (CNN, Dense ANN,
and RNN) have been also used for the classification of quenched jets,
and in particular to discriminate between medium-like and vacuum-like
jets (Apolin ario et al., 2021, arXiv:2106.08869v1)

BNN have been used for the pion, kaon, and proton identification
with tests done on data generated for the BES II experiment (Ye et al.,
CPC 32, 201 (2008)), combining multiple features from different
detectors like drift chamber, time of flight, and shower counter
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Reconstructed jet mass, for the different Deep Learning
architectures



Reconstruction & Analysis: Event & Signal Classification

Neural network analysis of pulse shapes have been shown to
effectively discriminate between neutron and y signals in scintillator
detectors in low-energy experiments (Doucet et al., 2020)

In post-experiment analyses, deep ANN and CNN (Gavalian et al.,
2020; Kuchera et al., 2019; Solli et al., 2021) were used to classify
events

In low-energy neutrino experiments, ML techniques are used to
differentiate different physics signal types or signals from
backgrounds. (Brice, 1996)

In OvBp-decay experiments, an ample amount of the target isotope
can be loaded in the scintillator, but the detector energy resolution is
typically worse than other types of detectors. The KamLAND-ZEN
experiment developed CNN and RNN to identify °C from cosmic-
ray spallation in the liquid scintillator loaded with 136Xe (Hayashida,
2019; Lietal., 2019a)
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Reconstruction & Analysis: Event Reconstruction

Various reconstruction methods are combined in collider experiments for
the precise knowledge of the kinematic variables of the deep inelastic
scattering process. Each method uses partial information from the scattered
lepton and/or the hadronic final state of deep in-elastic scattering and has its
own limitations.

Recently, it has been shown for the H1 and ZEUS collider experiments as
well as for simulations of a possible EIC detector that deep learning
techniques to reconstruct the kinematic variables can serve as a rigorous

method to combine and outperform existing reconstruction methods (Arratia
et al., 2022; Diefenthaler et al., 2021)
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Reconstruction & Analysis: Spectroscopy

. ) ) ) ) ANN simulated ®°Co spectra
Gamma-ray spectra are used, among other things, for isotope identification

and fundamental nuclear structure studies
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= Deep fully-connected neural network architectures are shown to 8 300
successfully identify isotopes (Abdel-Aal and Al-Haddad, 1997; Jhung -
et al., 2020; Kamuda et al., 2017; Medhat, 2012) and fit peaks (Abdel- S W—

Energy (keV)

Aal, 2002) in gamma spectra

. . . .. . Simulated uf cl d d nun-cl d

* Machine learning has also been shown to estimate activity levels in muatedy Cgf(ﬁff(fm)“:;’e)cifa nunelusiere
spectra from gamma-emitting samples (Abdel-Aal and Al-Haddad, M2 13 14 15 16
1997; Kamuda and Sullivan, 2018; Vigneron et al., 1996)

= Convolutional neural networks have demonstrated robustness to

spectra with unidentified background channels and calibration drifts in
the detectors (Kamuda et al., 2020)

do/dQ (mb/sr)

= Charged particle detection is routinely used for spectroscopy. For
example, (Bailey et al., 2021) uses ML to analyze signals from double-

sided silicon strip detectors to determine a—clustering. 1oo12 13 14 15 16
Ex[*Ti] (MeV)

do/dQ (mb/sr)
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A Few Final Words

As I said at the beginning this has been just a brush-stroke on the the basic
concepts & ideas behind Machine Learning and its applications to Nuclear

Physics

= Many exciting results have been achieved but the best is yet to come

= The nuclear physics community is eager to embrace the diverse toolbox of
tricks offered by Machin Learning

"= To solve many complex problems in the field and facilitate discoveries,
multidisciplinary efforts efforts are required involving scientists in nuclear
physics, computational science, applied math, and statistics are required




Once more:

<> You for your time & attention
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