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In this second lecture I will provide a snapshot of different applications of Machine Learning
techniques in Nuclear Physics. Particularly, I will briefly go through some selected examples of
Machine Learning applications in Nuclear Theory and Experiments

Most of what I will say is taken from these two very comprehensive recent reviews

1. P. Bedaque et al, A.I. for nuclear physics, Eur. Phys. J. A (2021) 57:100

2. A. Boehnlein et al., Machine Learning in Nuclear Physics, Rev. Mod. Phys. 94, 031003 (2022)



Machine Learning Applications  in Nuclear Theory
Since the pioneering work of Gazula et al. Gazula et al., NPA 540 1 (1992), who employed a feed forward
neural network to study global nuclear properties across the nuclear landscape, Machine Learning has
been used to predict

Ø Nuclear masses & charge radii
Ø a- & b-decay half-lives
Ø Fission yields
Ø Fusion reaction cross sections
Ø Isotropic cross-sections in proton-induced spallation reactions
Ø Ground and excited state energies
Ø Dripline locations
Ø The deuteron properties
Ø Proton radius
Ø Liquid-gas phase transition
Ø Nuclear energy density functionals
Ø Neutron star EoS
Ø The nucleon axial form factor from neutrino scattering
Ø Extrapolation of A-body results with ANN
Ø …

2003 2020

Number of nuclear theory ML papers



Early Applications of ML in Nuclear Physics
In a pioneering paper, Gazula et al., NPA 540 1 (1992)

Feedforward ANN taught to distinguish betrween
stable & unstable nuclides.

§ Architecture: 16+H+1. Several values
of the number H of neurons in the
hidden layer were considered

§ Training set: 2226 entries from the
General Electric Chart of the Nuclides

Deviation Δ 𝑍, 𝑁 = 𝑀!"# −𝑀$%& between
learned masses and the experimental ones

Neutro separation energies Solid lines: training
(experimental) data. Dotted line: prediction a
the ANN with a 16+18+18+18+1 architecture

§ Employed the backpropagation algorithm to teach feedforward
ANNs the existing data on nuclear stability and atomic masses to
study global nuclear properties across the nuclear landscape

§ Particularly, they contructed networks that learn and predict:
stability of nuclides, dripline locations, atomic masses,
separation energies



Nuclear Masses
Recently, Yüskel et al., arXiv:2101.12117v2

§ Have implemented a Multilayer Perceptron (MLP), to predict ground-state
binding energies of atomic nuclei.

§ They use two different MLP architectures with three and four hidden layers to study
their effects on the predictions

§ In the first one, they use as imput the proton and mass numbers of nuclei whereas
in the second they added pairing as additional input

§ They show that using appropriate MLP architectures and putting more physical
information in the input channels, MLP can make fast and reliable predictions for
binding energies of atomic nuclei



Nuclear Charge Radii

Ca isotopes

In 2020, Wu et al., PLB 809 135743 (2020)

§ Trained a feed-forward neural network model to
calculate the nuclear charge radii

§ The model was trained with the input data set of proton
and neutron number Z, N, the electric quadrupole
transition strength B(E2) from the first excited 2+ state to
the ground state, together with the symmetry energy

§ Their model reproduced well not only the isotope
dependence of charge radii, but also the kinks of charge
radii at the neutron magic numbers N = 82 for Sn and Sm
isotopes, and also N = 126 for Pb isotopes

§ Activation function: hyperbolic tangent

§ Cost function: mean squared error

§ Optimization algorithm: RMSProp method



a-decay half-lives
Freitas & Clark, arXiv:1910.12345 have trained ANNS by a
standard backpropagation learning algorithm to model and predict
the systematics of a-decay of heavy and superheavy nuclei. They
employ two kinds of network models:

§ Net1: Trained on the experimental half-life data for the selected 150
nuclear examples, yielding a purely statistical model of a decay

§ Net2: Trained on the data set consisting of the differences between the
predictions of a given theoretical model of a decay (specifically,
effective liquid drop model), providing statistically derived corrections
to this model

Net1 resuls

Net2 results



b-decay half-lives
Recently, Niu et al., PRC 99, 064307 (2019)

b-decay half-lives of Ni isotopes

b-decay half-lives of N=82 isotopes b-decay half-lives of N=126 isotopes

§ Have employed a Bayesian Neural Network (BNN) to predict nuclear b-decay
half-lives accurately and give reasonable uncertainty evaluations.

§ Known physics was explicitly embedded, including the ones described by the
Fermi theory of b decay, and the dependence of half-lives on pairing correlations
and decay energies.

§ Potential physics, which is not clear or even missing in nuclear models nowadays,
is learned by the BNN

Impact of b-decay half-lives on solar r-processes abundances



Fission Yields

BNN predicted fission charge yields of n + 235U 

BNN learning results of charge distributions of six nuclei

Last year, Qiao et al., PRC 103, 034621 (2021)
§ Applied a Bayesian neural network (BNN) approach to learn existing
evaluated charge yields and infer the incomplete charge yields of 239U.

§ They found that a two-hidden-layer BNN is improved the results compared
to a single- hidden-layer BNN for overall performance.

§ Their results support the normal charge yields of 239U around Sn and Mo
isotopes.

§ The BNN evaluation results are quite satisfactory on distribution positions
and energy dependencies of fission yields



Fusion Reaction Cross Sections
ANN have been used recently (Akkoyun, NIM B 461, 51 (2020)) to estimate the fusion-
evaporation cross section values for different reactions.

§ Deviations of 1.8% and 10.5% for the training and test data from the experimental
values are obtained, respectively

§ This order of deviations is lower than the cross section value from most common
theoretical calculations indicating that ANNs are capable for the estimation of cross
section values of fusion-evaporation reactions



Isotropic Cross Sections in Proton-induced Spallation Reactions
A few years ago Ma et al., CPC 44, 014104 (2020)

BNN predictions for selected residue fragments with Z=60 to 65 in
the 800 MeV/u 197Au + p spallation reaction. Three different numbers
of hidden nodes are tested, H = 34 (circles), 35 (triangles), 36
(triangles)

Input: incident energy, the
mass and charge numbers of
the projectile nucleus, the
mass and charge numbers of
the fragment, the neutron-
excess and the pairing effect in
the fragment

§ Proposed the Bayesian neural network (BNN) method to predict the
isotopic cross-sections in proton induced spallation reactions.

§ Learning from more than 4000 data sets of isotopic cross-sections from
19 experimental measurements and 5 theoretical predictions with the
SPACS parametrization, in which the mass of the spallation system
ranges from 36 to 238, and the incident energy from 200 MeV/u to
1500 MeV/u, they demonstrated that the BNN method can provide
good predictions of the residue fragment cross-sections in
spallation reactions



Ground and Excited State Energies

Lasseri et al., PRL 124, 162502 (2020) showed that deep neural
networks are capable of predicting the ground-state and excited
energies of more than 1800 atomic nuclei with an accuracy similar to the
one achieved by state-of-the-art nuclear energy density functionals (EDFs)
and with significantly less computational cost

Excitation spectrum of 178Os obtained from both artificial intelligence
(AI) and HFB calculations

HFB

E

Energy (a), rotational inertial along the principal axis (b) and 
vibrational inertia related to elongation (c) of 178Os



The first excited 2+ energy states of nuclei give much substantial information related to the
nuclear structure. In the even–even nuclei, the first excited state is generally 2+, and the
energy values of them increase as the closed shells are approached. The nuclei’s excited
levels can be investigated using theoretical nuclear models, such as the nuclear shell model.

Z < 40 even − even nuclei 𝑍 ≥ 40 even − even nuclei

Ground and Excited State Energies

Very recently, Akkoyun et al., IJP 96, 1791 (2022) have used ANNS to determine the
energies of the first 2+ states in the even–even nuclei in the nuclidic chart as a function of
Z and N numbers for the first time.



Dripline Locations
Neufcourt et al., PRL 122, 062502 (2019) have
used global mass models and statistical machine
learning to make predictions, with quantified
levels of certainty, for bound nuclides between
Si and Ti.

Posterior probability of existence of neutron-rich nuclei in the Ca region

§ Using a Bayesian model averaging analysis
based on Gaussian-process-based
extrapolations they introduce the posterior
probability pex for each nucleus to be bound
to neutron emission

§ They found that extrapolations for drip-line
locations are consistent across the global
mass models used

§ In particular, considering the current
experimental information and current global
mass models, they predicted that 68Ca has an
average posterior probability pex ≈ 76% to be
bound to two-neutron emission while the
nucleus 61Ca is likely to decay by emitting a
neutron (pex ≈ 46%)



Deuteron Properties
Keeble & Rios, PLB 809 135743 (2020) have used machine learning
techniques to solve the nuclear two-body bound state problem, the
deuteron.

§ They used a minimal one-layer, feed-forward neural network to represent
the deuteron S- and D-state wavefunction in momentum space, and solve
the problem variationally using ready-made machine learning tools

§ They found that a network with 6 hidden nodes can provide a faithful
representation of the ground state wavefunction, with a binding
energy that is within 0.1% of exact results

§ Input data: neutron-proton relative momentun q

§ Activation function: sigmoid, softmax

§ Target wavefunctions for training:

𝜓'%() 𝑞 ∝ 𝑞)𝑒*
+!,!
-

§ Optimization algorithm: RMSProp method



Proton Radius
In 2014 Graczyk & Juszczak, PRC 90 054334 (2014) used methods
of Bayesian statistics to extract the value of the proton radius
from the elastic electron-proton scattering data in a model-
independent way. To achieve that goal they considered a large
number of parametrizations (equivalent to neural network schemes)
ranked them by their conditional probability
P(parametrization|data) finding as the most probable proton raddi
found 𝒓𝑬

𝒑 = 𝟎. 𝟖𝟗𝟗 ± 𝟎. 𝟎𝟎𝟑 𝐟𝐦, 𝒓𝑴
𝒑 = 𝟎. 𝟖𝟕𝟗 ± 𝟎. 𝟎𝟎𝟕 𝐟𝐦



Liquid-Gas Phase Transition
Very recently Wang et al.,, PRR 2 043202 (2020) have shown that supervised
(BNN) & unsupervised (Autoencoders) machine-learning techniques can be
employed to study the nuclear liquid-gas phase transition. Based on the
experiment event-by-event charge multiplicity distribution, the neural
networks are capable of classifying the liquid and gas phases, and de-
termining the limiting temperature of the nuclear liquid-gas phase
transition. They obtain a value 𝟗. 𝟐𝟒 ± 𝟎. 𝟎𝟒 MeV, consistent with that
obtained by the traditional caloric curve method

Autoencoder network

Bayesian Neural Network

Scatter plot of the apparent temperature versus the
excitation energy per nucleon

Average charge multiplicity distribution
𝑀$ 𝑍 of the quasiprojectile fragments



Nuclear Energy Density Functionals
Very recently Wu et al.,, PRC 105, L031303 (2022) have employed the Kernel
Ridge Regression (KRR) machine learning model to build an energy
density functional for self-bound nuclear systems for the first time

§ By learning the kinetic energy as a functional of the nucleon density alone,
they have established a robust and accurate orbital-free density functional
for nuclei.

§ Self-consistent calculations that bypass the Kohn-Sham equations provide
the ground-state densities, total energies, and root-mean-square radii
with a high accuracy in comparison with the Kohn-Sham solutions



Neutron Star EoS

A couple of years ago Morawski & Bejger, A&A 642, A78 (2020)
applied an artificial neural network guided by the autoencoder
architecture as a method for precisely reconstructing the
neutron star equation of state, using their observable
parameters:masses, radii, and tidal deformabilities.

Example of the input data (M(R) measurements and corresponding the ANN 
reconstructed EoS

§ They constructed a few hidden-layer deep neural
networks on a generated data set, consisting of a realistic
equation of state for the neutron star crust connected with
a piecewise relativistic polytropes dense core, with its
parameters representative of state-of-the art realistic
equations of state.

§ They found that neural networks trained with a limited
data set are capable of generalising the mapping between
global parameters and EoS input tables for realistic
models



Nucleon Axial Form Factor From Neutrino Scattering
In 2019 Alvarez-Ruso et al.,, PRC 99, 025204 (2019) applied the Bayesian approach
for feedforward neural networks with 1 hidden layer and 1-4 hidden neurons to
the extract the nucleon axial form factor from the neutrino-deuteron-scattering data
measured by the Argonne National Laboratory bubble-chamber experiment. This
framework allows to perform a model-independent determination of the axial form
factor from data. When the low 0.05 < 𝑄! < 0.1GeV2 data are included in the
analysis, the resulting axial radius disagrees with available determinations. A large
sensitivity to the corrections from the deuteron structure was obtained

Distribution of the ANL number of events and the best fits obtained for MLPs
with M = 1–4 hidden units

Best fits of the axial form factor obtained from the analysis
of the three data sets: BIN0, BIN1, and BIN2



Extrapolation of ab-initio nuclear structure calculations
Recently, ANN have been employed to extrapolate the results of ab-initio nuclear structure calculations in finite
model spaces. Particularly:

• Negoita et al., PRC 99, 054308 (2019) have used a feed-forward
ANN method for predicting the ground state energy and the
ground state point proton root-mean-squared radius of 6Li
training the network with No-Core Shell Model (NCSM) results,
obtained in accessible harmonic oscillator (HO) basis spaces. They
showed that an ANN is able to predict correctly extrapolations of the
NCSM results to very large model spaces of size Nmax ∼ 100.

• Similarly, Jiang et al., PRC 100, 054326 (2019) have also
employed an ANN to extrapolate the ground state energy and
radii of 4He, 6Li & 16O computed with the NCSM and the
coupled-cluster (CC) methods.

4He with NCSM+NNLOopt

16O with CC+NNLOopt



Extrapolation of ab-initio nuclear structure calculations
Recently, I.V., arXiv:2203.11792 has employed a feed-
forward ANN to extrapolate at large model spaces the
results of ab-initio hypernuclear NCSM calculations for
the L separation energy BL of the lightest hypernuclei,
obtained in accessible HO basis spaces using chiral NN,
NNN & YN interactions. A network with a single hidden
layer of eight neurons is enough to extrapolate correctly
the value of BL to model spaces of size Nmax=100

Hypernucleus ANN Prediction Experimental 
Vaue

$
%𝐻 0.16 ± 0.01 0.13 ± 0.05

$
&𝐻(0') 2.47 ± 0.03 2.157 ± 0.077

$
&𝐻(1) 1.37 ± 0.03 1.067 ± 0.08

$
&𝐻𝑒(0') 2.41 ± 0.04 2.39 ± 0.05

$
&𝐻𝑒(1') 1.33 ± 0.03 0.984 ± 0.05



Machine Learning Applications  in Nuclear Experiments

During the last few years, Machine Learning techniques have been applied to the full chain of
experimentation including in particular:

In the next I will shortly go over some exampleses of these two applications

§ Desing of experiments

§ Reconstruction & Analysis



Experimental Design

§ Physics and detector simulations are critical
for both the initial design and the
optimization of detectors in nuclear physics
experiments. Detectors are usually
characterized by multiple parameters capable
of tuning: mechanics, geometry and optics of
each component

§ Detector design optimization can be a large
combinatorial problem characterized by
accurate and computationally expensive
simulations. In this context, ML offers different
optimization strategies, spanning from
reinforcement learning to evolutionary
algorithms

Conceptual layout of an optimization pipeline for a 
muon radiography apparatus



Reconstruction & Analysis: Charge Particle Tracking

§ The improvement in track seeding resulting from using ANN and
deep learning methods, yields substantially faster track
reconstruction speed.

§ At high luminosity, tracking suffers from track candidates that share
hits. This results in hits wrongly identified as “on-track” and
produces ghost tracks.

§ In high luminosity environments, the largest fraction of CPU time
& memory in tracking in a traditional analysis is spent on setting up
various filters at each measurement site.

§ One of the most common deep learning algorithms employed for
tracking pattern recognition are Convolutional Neural
Networks (CNN)

§ Machine learning algorithms used for background rejection
involve topological properties of tracks to isolate signal from
background Side view of hit patterns in the NeuLAND detector , created

by the interaction of one neutron with a kinetic energy of
600MeV 



Reconstruction & Analysis: Calorimetry

The GlueX experiment at Jefferson Lab (Barsotti and Shepherd,
arXiv: 2002.09530v1) used ANN to reduce background in the
GlueX forward calorimeter for the detection of photons
produced in the decays of hadrons.

(Top) Performance of the eight different types of multi-variate analysis algorithms that were
tested. (Bottom) Classifier output distribution for the MLP when run on the background (red) 

and signal (blue) training samples

§ The training was done on data using w-meson decays.

§ Energy deposition characteristics in the calorimeter such as
shapes, size, and distribution were employed to discriminate
between signal and background, where the background
mostly originates from hadronic interactions that can be
difficult to distinguish from low energy photon interactions
The ANN-based algorithm showed to be a powerful tool to
reconstruct neutral particles with high efficiency and to
provide substantial background rejection capability



Reconstruction & Analysis: Particle Identification

Particle identification (PID) is done with dedicated detectors
capable of identifying certain particle types, such as for example,
Cherenkov detectors largely used in modern nuclear
experiments for identifying charged particles like pions, kaons,
and protons corresponding to a wide range in momentum.

Cherenkov detectors are typically endowed with single photon
detectors and the particle type can be recognized by
classifying the corresponding detected hit pattern

§ DeepRICH (Fanelli and Pomponi, Mach. Learn.: Sci.
Technol. 1 015010 (2020)) is a recently developed custom ar-
chitecture that combines Variational Auto-Encoders (VAE),
CNN and ANN. The re-construction performance is fast due
to its implementation on GPUs that allow for parallel
processing of batches of particles during the inference phase

Example of features extracted by the CNN module from
π’s and K’s at 4 GeV/c (left) and 5 GeV/c (right). These
features are then used to classify the particle



Reconstruction & Analysis: Particle Identification

§ In Derkach et al., NIMPRA A 952, 161804 2020, Generative Adversial
Networks (GAN) have been used to simulate the Cherenkov detector
response. This architecture predicts the multidimensional distribution of
the likelihood for particle identification produced by-passing low-level
details

§ Machine learning has been applied to design experimental observables
that are sensitive to jet quenching and parton splitting. CNN have been
used for instance to discriminate quark and gluon jets (Komiske et
al., JHEP 1, 1 2017). Different deep architectures (CNN, Dense ANN,
and RNN) have been also used for the classification of quenched jets,
and in particular to discriminate between medium-like and vacuum-like
jets (Apolin ário et al., 2021, arXiv:2106.08869v1)

§ BNN have been used for the pion, kaon, and proton identification
with tests done on data generated for the BES II experiment (Ye et al.,
CPC 32, 201 (2008)), combining multiple features from different
detectors like drift chamber, time of flight, and shower counter

Reconstructed jet mass, for the different Deep Learning
architectures

1D projection to kaon delta log-likelihood observables



Reconstruction & Analysis: Event & Signal Classification

§ Neural network analysis of pulse shapes have been shown to
effectively discriminate between neutron and g signals in scintillator
detectors in low-energy experiments (Doucet et al., 2020)

§ In post-experiment analyses, deep ANN and CNN (Gavalian et al.,
2020; Kuchera et al., 2019; Solli et al., 2021) were used to classify
events

§ In low-energy neutrino experiments, ML techniques are used to
differentiate different physics signal types or signals from
backgrounds. (Brice, 1996)

§ In 0nbb-decay experiments, an ample amount of the target isotope
can be loaded in the scintillator, but the detector energy resolution is
typically worse than other types of detectors. The KamLAND-ZEN
experiment developed CNN and RNN to identify 10C from cosmic-
ray spallation in the liquid scintillator loaded with 136Xe (Hayashida,
2019; Li et al., 2019a)

Detected photoelectrons for 136Xe 0nbb- decays and 10C b+
decays generated inside a sphere with 3m radius

Neutron & g-ray waveforms



Reconstruction & Analysis: Event Reconstruction
§ Various reconstruction methods are combined in collider experiments for

the precise knowledge of the kinematic variables of the deep inelastic
scattering process. Each method uses partial information from the scattered
lepton and/or the hadronic final state of deep in-elastic scattering and has its
own limitations.

§ Recently, it has been shown for the H1 and ZEUS collider experiments as
well as for simulations of a possible EIC detector that deep learning
techniques to reconstruct the kinematic variables can serve as a rigorous
method to combine and outperform existing reconstruction methods (Arratia
et al., 2022; Diefenthaler et al., 2021)



Reconstruction & Analysis: Spectroscopy

Gamma-ray spectra are used, among other things, for isotope identification
and fundamental nuclear structure studies

§ Deep fully-connected neural network architectures are shown to
successfully identify isotopes (Abdel-Aal and Al-Haddad, 1997; Jhung
et al., 2020; Kamuda et al., 2017; Medhat, 2012) and fit peaks (Abdel-
Aal, 2002) in gamma spectra

§ Machine learning has also been shown to estimate activity levels in
spectra from gamma-emitting samples (Abdel-Aal and Al-Haddad,
1997; Kamuda and Sullivan, 2018; Vigneron et al., 1996)

§ Convolutional neural networks have demonstrated robustness to
spectra with unidentified background channels and calibration drifts in
the detectors (Kamuda et al., 2020)

§ Charged particle detection is routinely used for spectroscopy. For
example, (Bailey et al., 2021) uses ML to analyze signals from double-
sided silicon strip detectors to determine a-clustering.

ANN simulated 60Co spectra

Simulated uf clustered (top) and nun-clustered
(bottom) spectra



A Few Final Words

§ Many exciting results have been achieved but the best is yet to come

§ To solve many complex problems in the field and facilitate discoveries,
multidisciplinary efforts efforts are required involving scientists in nuclear
physics, computational science, applied math, and statistics are required

§ The nuclear physics community is eager to embrace the diverse toolbox of
tricks offered by Machin Learning

As I said at the beginning this has been just a brush-stroke on the the basic
concepts & ideas behind Machine Learning and its applications to Nuclear
Physics



² You for your time & attention

² The organizers for their invitation

Once more:


