
A short walk through
machine learning in

nuclear physics

Selected Topics in Nuclear & Atomic
Physics 2022

September 25th-October 1st 2022
Fiera di Primiero

Isaac Vidaña, INFN Catania

This short lecture is just a brush-stroke on the the basic concepts & ideas
behind Machine Learning and its applications to Nuclear Physics. To review
in a complete and detailed way this topic in the time of two hours of this lecture
is basically an impossible task and, therefore, all of you interested is referred to
the several excellent books and many reviews that comprehensively cover all
different aspects of this fascinating field such as, e.g.

1. C. M. Bishop, Pattern Recognition and Machine Learning, (Springer 2006).

2. T. Hastie, R. Tibshirami, an J. Friedman, The Elements of Statistical Learning: Data Mining,

Interference and Prediction (Springer Verlag, Berlin), (2009).

3. K. P. Murphy, Machine Learning: A Probabilistic Perspective (The MIT Press, Cambridge,

Massachusetts), (2012).

4. Y. LeCun, Y. Bengio, and G. Hinton, Nature 521 (2015) 436.

5. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning (Adaptative Computation and Machine

Learning series), The MIT Press, Cambridge, Massachusetts, ISBN 9780262035613 (2016).

Artificial Intelligence, Machine Learning & Deep Learning

• Artificial Intelligence (AI) has become one of the most exciting & dynamic
areas of research impacting many domains of science & technology. The
main challenge of AI is:

Develope algorithms that can sense, reason, act & adapt to solve different
type of problems

• Machine Learning is a branch of Artificial Intelligence whose scope is to
devise algorithms able to recognize patterns in previously unseen data without
any explicit instructions by an external party. Different types of ML include

• Deep learning is a subset of machine learning in which multilayer neural
networks adapt & learn from vast amounts of data

Ø Supervised Learning: the training dataset contains both the inputs &
the desired outputs

Ø Unsupervised Learning: the training dataset contains only the inputs
& finds structures in the data

Ø Reinforcement Learning: the algorithm learns on its own through a
balance between exploration (of the unknown) and exploitation (of the
current knowledge)

Supervised Learning

In supervised learning, known input-output (feature-
label) relations are given to the machine learning
algorithm to trained it and infer a mapping therefrom.
Once the model is trained based on the known data,
one can use unknown data into the model to get
predictions

Two commont tasks of supervised learning are:

1. Classification: used when the output variable is discrete. Outputs are divided into two or
more classes. The goal is to produce a model that assigns inputs into one of these classes

2. Regression: used when the output variable is continuous. The goal is to find a function
that maps input data into continuous output values

Unsupervised Learning

In unsupervised learning, the output of the input training
data is unknown. The input data is fed to the Machine
Learning algorithm and is used to train the model which
then is employed to search for patterns in the data

Two common tasks of unsupervised learning are:

1. Clustering : Data are divided into groups with certain common traits, without knowing the
different groups beforehand

2. Generation: Building a model to generate data that are similar to a training dataset in both
examples and distributions of examples

Reinforcement Learning
Reinforcement learning is the closest to what we might associate with the
expression ‘learning’. Given a framework of rules and goals, an agent
(algorithm) learns in an interactive environment by trial and error using
feedback from its own actions and experiences and it gets rewarded or
punished depending on which strategy it uses. Each reward reinforces the
current strategy, while punishment leads to an adaptation of its policy

There are five key elements of reinforcement learning models:

§ Agent: The algorithm in the model that performs the requested task

§ Environments: The “world” in which the agent carries out its actions. It uses
current states and actions of the agent as input, rewards and next states of the
agents as output

§ States: It refers to the situation of the agent in an environment. There are
current and future/next states

§ Actions: The movement chosen and performed by the agent to gain rewards

§ Rewards: Reward means desired behaviours which are expected from the
agent. Rewards also refer to the feedback for the agent’s actions in a given state

Machine Learning Process: General Scheme

PHASE 1: TRAINING (LEARNING)

PHASE 2: PREDICTION

The task of making a machine to learn is made of 2 phases

Machine Learning Steps
7 major steps (6 in training phase & 1 in the prediction one) can be distinguished in the Machine Leaning
process
1. Collecting Data

Machines learn from the data given to them. Therefore, it is of the
utmost importance to collect reliable data so that a machine
learning model can find the correct patterns. The quality of the data
feeded to the machine will determine how accurate the model will
be. If data is incorrect or outdated, the machine will have wrong
outcomes or predictions which are not relevant

2. Preparing the Data (Feture Engineering)

§ Clean the data to remove unwanted data, missing values, rows, and
columns, duplicate values, data type conversion, etc

§ Visualize the data to understand how it is structured and understand
the relationship between various variables and classes present

§ Splite the cleaned data into two sets - a training set and a testing
set. The training set is the set a model learns from. A testing set is
used to check the accuracy of a model after training

Machine Learning Steps

3. Choosing a Model

A machine learning model determines the output one gets after
running a machine learning algorithm on the collected data. It is
important to choose a model which is relevant to the task at hand,
e.g., one has to consider if the model is suited for numerical or
categorical data and choose accordingly

4. Training the Model

Training is the most important step in machine learning. In training,
one passes the prepared data to the machine learning model to
find patterns and make predictions. It results in the model learning
from the data so that it can accomplish the task set. Over time, with
training, the model gets better at predicting

Machine Learning Steps
5. Evaluating the Model

After training a model, one has to check to see how it is
performing. This is done by testing the performance of the model
on previously unseen data. The unseen data used is the testing set.
If testing was done on the same data which is used for training, one
will not get an accurate measure, as the model is already used to the
data, and finds the same patterns in it, as it previously did

6. Hyperparameter Tunning

Once one has created and evaluated a model, one has to see if its
accuracy can be improved in any way. This is done by tuning the
hyperparameters present in your model. Hyperparameters are the
variables in the model (e.g, number of hidden layers & neurons in an
artificial neural network). At a particular value of a hyperparameter,
the accuracy will be the maximum. Hyperparameter tuning refers to
finding these values

7. Making Predictions
In the end, one can use the model on unseen data to make predictions accurately

Artificial Neurons – a brief glimpse into the early history of ML

Biological Neurons are interconnected nerve cells in the brain that are
involved in processing and transmitting chemical and electrical signals.
Their main parts are:

§ Cell nucleus or Soma processes the information received from
dendrites

§ Dendrites are branches that receive information from other neurons

§ Synapse is the connection between an axon and other neuron
dendrites.

§ Axon is a “cable” that is used by neurons to send information

Ø Trying to understant how the brain works, Warren McCulloch and Walter Pitts introduced the first artifical neutron, the so-
called McCulloch-Pitts (MCP) neuron in 1943. They though it as a simple logic gate with binary outputs: multiple signals
arrive at the dendrites, they are then integrated into the cell body, and, if the accumulated signal exceeds a certain threshold,
an output signal is generated that will be passed on by the axon

Ø A few years later, in 1957, Frank Rosenblatt published the first concept of the perceptron learning rule based on the MCP
neuron model. Rosenblatt proposed an algorithm that would automatically learn the optimal weight coefficients that would
then be multiplied with the input features in order to make the decision of whether a neuron fires (transmits a signal) or not

Formal Definition of an Artificial Neuron
Ø More formaly, we can put the idea behind artifical neurons into the

context of a binary classification task where we refer to our two classes
as 1 (positive class) and -1 (negative class) for simplicity

Ø We can then define an activation function 𝑓 𝑧 that takes a linear
combination 𝑧 = ∑!"#

$ 𝜔!𝑥! (named net input) of certain input values
𝑥⃗ = 𝑥# , 𝑥% , ⋯ , 𝑥$ where the coef2icients 𝜔! are the so-called weights
and it gives 1 or -1 if the net input of a particular input value is larger or
smaller than a certain defined threshold 𝜽

𝑓 𝑧 = $ 1 𝑖𝑓 𝑧 ≥ 𝜃
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Ø For simplicity, we can bring the threshold 𝜃 to the left side of the equation
and define a weight-zero as 𝜔& = −𝜃 and 𝑥& = 1 so that we can write

𝑧 = 1
!"#

$

𝜔#𝑥% 𝑓 𝑧 = $ 1 𝑖𝑓 𝑧 ≥ 0
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒and

Ø In the Machine Learning literature the negative threshold or weight 𝜔& = −𝜃 is usually called the bias unit and it is
represented with the letter b

z f(z)

𝑥# = 1

𝑥&

𝑥!

𝑥$'&

𝑥$

𝜔# = −𝜃
𝜔&
𝜔!

𝜔$'&

𝜔$

…
…

Biological Neuron Artificial Neuron

Cell nucleus
(Soma)

Node

Dendrites Input

Synapse Weights or
interconnections

Axon Output

The Perceptron Learning Rule

The whole idea behind the MCP neuron and Rosenblatt's thresholded perceptron model is to use a reductionist
approach to mimic how a single neuron in the brain works: it either fires or it doesn't. Thus, Rosenblatt's initial
perceptron rule is fairly simple, and the perceptron algorithm can be summarized by the following steps and illustrated
by the diagram:

1. Initialize the weights to 0 or small random numbers

2. For each training example 𝑥⃗
a. Compute the output value 6𝑦
b. Update the weights according to the perception

learning rule

𝜔(→ 𝜔(+ 𝜂 𝑦 − 6𝑦 𝑥(

Here 𝜂 is the learning rate (a constant between 0 and 1), y is the true class label and 6𝑦 the 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒄𝒍𝒂𝒔𝒔 𝒍𝒂𝒃𝒆𝒍

Example of a Binary Classification Task

§ Consider 30 training examples: 15 of which are labeled as
negative class (-) and the other 15 as positive class (+)

§ The dataset is two-dimensional, which means that each
training exampe has two values associated to it: 𝒙𝟏 and 𝒙𝟐

§ Applying the Perceptron Learning Rule is possible to find
the decision boundary

𝜔&𝑥& + 𝜔+𝑥+ + 𝑏 = 0

that can separate those two classes and will allow to
classify new data into each of those two cathegories given
its values 𝑥& and 𝑥+

decision boundary

z f(z)

𝑥&

𝑥+

𝜔&

𝜔+

Preceptron & Linear Regression
§ The perceptron can be used to predict the outcome of (linear)

continuous functions if the identity function 𝑓 𝑧 = 𝑧 is used
as activation function intead of the unit step function

§ Given a set of features variables x and their corresponding target
values y that are linearly related

By applying the Perceptron Learning Rule is possible to find
the strainght line that minimizes the distance – most
commonly the average square distance – between the data
points and the fitted line and make predictions for new data

y=ω𝑥 + 𝑏

z f(z)=𝑧𝑥
𝜔

x1 y1
x2 y2
… …

xm ym

y=ω𝑥 + 𝑏

Convergence of the Perceptron Algorithm
It is important to note that the convergence of the perceptron is only guaranteed
if the two classes are linearly separable and the learning rate is sufficiently small. If the two
classes cannot be separated by a linear decision boundary the perceptron would never stop
updating the weights. In this case, we can set a maximum number of passes over the training
dataset (epochs or iterations) and/or a threshold for the number of tolerated misclassifications

The solution, as we will see later, will imply the introduction of non-linear activation functions

Perceptron & Logical Functions
An interesting thing about perceptrons is that they can be used to compute the elementary logical functions

§ Suppose we have a perceptron with two inputs x1
and x2 , each with weight –2, which can take values 0
and 1, and that the overall bias is 3 b=3

𝑥&

𝑥+

𝜔& = −2

𝜔+ = −2
The perceptron produces the following results:

x1 x2 Perceptron’s result

0 0 1
0 1 1

1 0 1
1 1 0

But that is nothing else than the truth table of the logical NAND gate. Therefore, this perceptron implements
a NAND gate

Perceptron & Logical Functions

Now since the NAND gate is universal for computation, i.e.,, we can build any computation up out of NAND
gates, we can use networks of perceptrons to compute any logical function at all.

For example, we can use NAND gates to build a circuit which
adds two bits, x1 and x2. This requires computing the bitwise
sum, 𝑥& ⊕ 𝑥+, as well as a carry bit which is set to 1 when both
x1 and x2 are 1, i.e., the carry bit is just the bitwise product x1 x2:

To get an equivalent network of perceptrons we replace all the
NAND gates by perceptrons with two inputs, each with weight
–2, and an overall bias of 3.

General Architecture of an Artificial Neural Network
The architecture of an artificial neural network (ANN) consists of an
input layer, one or more hidden layers, and an output layer of several
interconnected artificial neurons

§ 𝜔!"# : weight between the neuron k-th in the layer (l-1)-th and the neuron j-th in the layer l-th

§ 𝑏!#: bias of neuron j-th in the layer l-th

§ 𝑎!# = 𝑓 𝑧!# : activation (output) of neuron j-th in the layer l-th (note that 𝑎!$ = (𝑦%)

§ 𝑧!# = ∑"𝜔!"# 𝑎"#&' + 𝑏!# ∶ weighted input to the activation function of neuron j-th in the layer l-th

Terminology:

Ø Input layer: Made up of those neurons that introduce input patterns into the
network. No processing occurs in these neurons

Ø Hidden layers: Formed by those neurons whose inputs come from previous
layers and whose outputs pass to neurons of later layers

Ø Output layer: Made up by the neurons whose output values correspond to the
outputs of the entire network

Total number of fitting parameters: 𝑛! = .
"#$

%&$

𝑁" + 1 𝑁"

A mostly complete chart
of neural networks

A mostly complete chart
of neural networks

Hyperparameters are the variables which determine the network structure (e.g., number of hidden layers and neurons, type of
regularization techique, initializatial values of weights & biases, type of activation function …) and the variables which
determine how the network is trained (e.g., learning rate, number of epochs (iterations), bach size, …). They are set before the
training of the network

Neural Network Hyperparameters

Ø Number of hidden layers & neurons : Many hidden layers and neurons layer can increase accuracy. Smaller number of hidden layers and
neurons may cause underfitting

Ø Initial values of weights & biases: different weight initialization schemes can be used to start the training

Ø Dropout: is a regularization technique to avoid overfitting (seen later). It consist on
dropping randomly neurons from the neural network during training in each iteration.
The number of dropped neurons is another hyperparameter

Ø Type of activation function: different types of activation function (seen later) can be used to introduce non-linearities

§ Hyperparameters related to the network structure§ Hyperparameters related to the network structure

§ Hyperparameters related to the training of the network

Ø Learning rate: defines how quickly a network updates its parameters

Ø Number of epochs or iterations: is the number of times the whole training data is shown to the network while training

Ø Batch size: is the number of samples given to the network after which parameter update happens

Activation Functions

§ As mentioned before one of the limitations of the Perceptron Algorithm is that it only converges for linear
(classification or regression) problems. The same is true for any ANN made of perceptrons since, it will be simply a
linear combination of perceptrons

§ In order to pick up the non-linearities of the input data that enable ANN to capture complex non-linear
relationships in the dataset and make new predictions, ANN should employ non-linear activation functions

§ There exist several possible choices for the activation function depending on the particular problem one is trying
to solve. The choice of the activation function has a large impact on the capability and performance of the neural
network, and different activation functions may be used in different parts of the model. All hidden layers
typically use the same activation function. The output layer will typically use a different activation function from the
hidden layers and is dependent upon the type of prediction required by the model

§ Activation functions are typically differentiable (i.e., the first-order derivative can be calculated for a given input
value). This is required given that neural networks are typically trained using the backpropagation of error
algorithm that requires the derivative of prediction error in order to update the weights of the model

§ There are many different types of activation functions used in neural networks, although perhaps only a small
number of functions used in practice for hidden and output layer

ReLU Hidden Layer Activation Function
The Rectified Linear Activation (ReLU) function is perhaps the
most common function used for hidden layers because it is simply
to implement and is able to overcorme some linitations of other
activations functions. It is simply given by

𝑓 𝑧 = max 0, 𝑧

Advantages:

§ Fewer vanishing gradient problems that slow the learning process

§ Efficient computation: only comparison

§ Scale-invariant: 𝑚𝑎𝑥 0, 𝑎𝑧 = 𝑎 𝑚𝑎𝑥 0, 𝑧 for a ≥ 0

Potential Problems:

§ Not differentiable at z=0: the derivative at z=0 can be arbitrarely chosen to be 0 or 1

§ Not zero-centered

§ Unbounded
§ Dying ReLU Problem: neurons can sometimes be pushed into states in which they become inactive for essentially all inputs. In this state, no

gradients flow backward through the neuron, and so the neuron becomes stuck in a perpetually inactive state and "dies"

Sigmoid Hidden Layer Activation Function
The Sigmoid activation function takes any real value as input
and outputs values in the range 0 to 1. The larger the input
(more positive), the closer the output value will be to 1, whereas
the smaller the input (more negative), the closer the output will be
to 0. It is given by the expression

𝑓 𝑧 =
1

1 + 𝑒'2

Advantages:

§ Differentiable at each value z : 𝑓(𝑧 = 𝑓(𝑧)(1 − 𝑓(𝑧))

§ Zero-centered

§ Bound in the range [0,1]

Potential Problems:

§ Vanishing gradient: for values of |z| > 5 its gradient becomes very small which can lead to a slow learning of the neural
network

Tanh Hidden Layer Activation Function
The hyperbolic tangent (Tanh) activation function is very similar
to the sigmoid one. It also takes any real value as input and
outputs values in the range 0 to 1. It is given by

𝑓 𝑧 =
𝑒2 − 𝑒'2

𝑒2 + 𝑒'2

Advantages:

§ Differentiable at each value z : 𝑓(𝑧 = 1 − 𝑓(𝑧))

§ Zero-centered

§ Bound in the range [0,1]

Potential Problems:

§ Vanishing gradient: for values of |z| > 5 its gradient becomes very small which can lead to a slow learning of the neural
network

How to Choose a Hidden Layer Activation Functions

§ As mentioned before a neural network will almost always have the same
activation function in all hidden layers. And is typically chosed based on
the type of neural network architecture

§ Traditionally, the sigmoid activation function was the default
activation function in the 1990s. Perhaps through the mid to late 1990s
to 2010s, the Tanh function was the default activation function for
hidden layers

§ Modern neural network models with common architectures, such as
Multilayer Perceptron (MLP) and Convolutional Neural Networks
(CNN) make use of the ReLU activation function, or extensions of it
not mentioned here. Recurrent networks still commonly use Tanh or
sigmoid activation functions, or even both.

Output Layer Activation Functions

The output layer is the layer in a neural network model that directly outputs a prediction. Typical ouput layer activation
functions include:

Softmax activation function:

§ Linear or identity activation function: f(z)=z (already mentioned before)

§ Sigmoid activation function

§ Softmax actication function

Is a kind of generalization of the sigmoid activation function given by

𝑓 𝑧! =
𝑒2*

∑(𝑒
2+

How to Choose a Ouput Layer Activation Functions

You must choose the activation function for your output layer based on the
type of prediction problem that you are solving:

§ If your problem is a regression problem, you should use a linear
activation function

§ If your problem is a classification problem, then there are three
main types of classification problems and each may use a
different activation function

ü If there are two mutually exclusive classes (binary
classification), then your output layer will have one node and a
sigmoid activation function should be used

ü If there are more than two mutually exclusive classes
(multiclass classification), then your output layer will have one
node per class and a softmax activation should be used

ü If there are two or more mutually inclusive classes (multilabel
classification), then your output layer will have one node for
each class and a sigmoid activation function is used

The Learning Process of an ANN
The learning (or training) process of an ANN involves the minimization of a cost (also called loss or error)
function (which compares the desired ouput (target) and the predicted one by the ANN) in order to obtain the
optimal set of fitting parameters (weights and biases) of the network. The minimization is usually done by
using algorithms such as the so-called gradient descent

§ Regression Cost Functions — used when solving a regression problem. Two examples of them
are the Mean Squared Error, the Mean Absolute Error

§ Classification Cost Functions — used when solving a classification problema. Among these
type we can distinguish the Binary Cross-Entropy and the Categorical Cross-Entropy

Choice of a Cost Function

In general, the choice of the cost function depends on the type of problem one is solving with a neural
network. In supervised learning, there are two main types of cost functions:

Cost Functions
§ Regression Cost Functions

ü Mean Squared Error (MSE)

𝐶345 =
1
𝑁
1
!"&

6

𝑦(!) − 6𝑦(!)
+

§ One of the most popular cost functions

§ Being difference between the predicted (<𝑦(!)) and the target (𝑦(!))
values squared, it does not matter whether the predicted values are
above or below the target ones

§ Is a convex function with a clearly defined global mínimum. This allowes
a more easily use of the gradient decent optimization algorithm

§ However, it is very sensitive to the outliers; if a predicted value is
significantly greater than or less than its target value, this will
significantly increase the cost

ü Mean Absolute Error (MAE)

𝐶395 =
1
𝑁
1
!"&

6

𝑦(!) − 6𝑦(!)
§ Used as an alternative of the MSE for instance when the training data has

a large number of outliers to mitigate the increase of the cost due to these
values

§ However, as the average distance approaches 0, gradient descent
optimization will not work, as the function's derivative at 0 is undefined

Cost Functions
§ Classification Cost Functions

ü Binary Cross-Entropy § Is the cost function used in binary classification models

§ Classification neural networks work by outputting a vector of probabilities
(the probability that the given input fits into each of the pre-set categories)
then selecting the category with the highest probability as the final output

ü Categorical Cross-Entropy

§ It is the generalization of the Binary Cross-Entropy to the case of a multi-
class classification problem

§ In binary classification, there are only two possible actual values of y: 0 or
1. Thus, to accurately determine the cost between the actual and predicted
values, it needs to compare the actual value (0 or 1) with the probability that
the input aligns with that category (p(i) = probability that the category is 1;
1 — p(i) = probability that the category is 0)

𝐶'() = −
1
𝑁.
*#$

+

𝑦*𝑙𝑜𝑔 𝑝 𝑦* + 1−𝑦* 𝑙𝑜𝑔 1−𝑝 𝑦*

𝐶AA5 = −
1
𝑁
1
!"&

6

1
("&

3

𝑦!(𝑙𝑜𝑔 𝑝 𝑦!(

Batch Gradient Descent
Batch Gradient Descent or simply Gradient Descent is an iterative optimization algorithm for
finding a local minimum of a differenciable function

Idea: Take repeated steps in the opposite direction of the
gradient since the gradient of a multi-variable function 𝑭 𝒙
defines the direction of its maximum increase. One starts with
a guess 𝑥⃗# and considers the sequence 𝑥⃗&, 𝑥⃗+, 𝑥⃗B, ⋯ according to

With this idea in mind the weights 𝝎𝒋𝒌
𝒍 & biases 𝒃𝒋𝒍of the network are updated at each iteration

according to:

𝜔(C
D → 𝜔(C

D − 𝜂
𝜕𝐶
𝜕𝜔(C

D , 𝑏(
D → 𝑏(

D − 𝜂
𝜕𝐶
𝜕𝑏(

D

where h is the so-called learning rate, one of the hyperparameters of the newtwork, and it scales
the magnitude of the weighs and biases updates

𝑥⃗EF& = 𝑥⃗E − 𝜂∇𝐹 𝑥⃗E , with h > 0

Batch Gradient Descent Algorithm

The Batch Gradient Descent Algorithm is quite simple. For each epoch (or iteration) of the training do the
following steps:

1. Feed the network with the entire training input dataset 𝑥⃗

2. Calculate the cost function and update the weigths & biases

3. Repeat steps 1 – 2 until the convergence the cost function is substancially reduced

𝜔(C
D → 𝜔(C

D − 𝜂
𝜕𝐶
𝜕𝜔(C

D , 𝑏(
D → 𝑏(

D − 𝜂
𝜕𝐶
𝜕𝑏(

D

A comment in the learning rate h
A proper value of h plays a crucial role in gradient descent

§ Choose h too small and the algorithm will converge very slowly or get stuck in the local minima

§ Choose h too big and the algorithm will never converge either because it will oscillate between
around the minima or it will diverge by overshooting the range

Effect of the learning rate h in the convergence of the Gradient Descent
Algorithm

This figure tries to summarize the effect of h on
the convergence of the gradient descent algorithm

§ The yellow curve shows the divergence of the algorithm
when the learning rate is really high wherein the learning
steps overshoot.

§ The green curve shows the case where learning rate is not
as large as the previous case but is high enough that the
steps keep oscillating at a point which is not the minima.

§ The red curve would be the optimum curve for the cost
drop as it drops steeply initially and then saturates very
close to the optimum value.

§ The blue curve is the least value of h and converges very
slowly as the steps taken by the algorithm during update
steps are very small.

Stochastic Gradient Descent

§ In general, when computing the cost function we look at the loss associated with each training example and then
sum these values together for an overall cost of the entire dataset. This is the most basic form of gradient
descent, also known as batch gradient descent since we compute the cost in one large batch computation

§ However, for big datasets this can take a long time to compute. Moreover, it raises the question: do we really
need to see all of the data before making improvements to our parameter values ?

§ A way to deal with big datasets is to split the training data into mini batches which can be processed
individually. When each mini batch is processed, we look at the cost function relative to the data from the current
mini batch and update our parameters accordingly. Then we continue to do this iterating over all of the mini
batches until we have seen the whole dataset. One full cycle through the dataset is referred to as an epoch or
iteration. This is the idea behind of the so-called stochastic gradient descent

Stochastic Gradient Descent

1. Pick ramdonly a mini-batch of size m: 𝑥⃗&, 𝑥⃗+,⋯, 𝑥⃗$

The idea is to split the training dataset into small subsets of
training inputs 𝑥⃗&, 𝑥⃗+,⋯, 𝑥⃗$ each one known as 𝐦𝐢𝐧𝐢 −
𝐛𝐚𝐭𝐜𝐡 and for a given epoch or iteration do the following
steps:

2. Feed it to the network

3. Calculate the average gradient of the cost function of the mini-batch and update the weigths & biases

4. Repeat steps 1 – 3 until all the training imputs are exhausted
which is said to complete an epoch (iteration) of training. At
that point we start with a new training epoch

𝜔(C
D → 𝜔(C

D −
𝜂
𝑚
1
!"&

$
𝜕𝐶J⃗*
𝜕𝜔(C

D , 𝑏(
D → 𝑏(

D −
𝜂
𝑚
1
!"&

$
𝜕𝐶J⃗*
𝜕𝑏(

D

Advanced Optimization Techniques
Advanced optimiaztion techniques developed to provide a faster learning than the Gradient Descent
Algorithm include the following ones

§ Momentum Average Gradient
§ Nesterov Accelerated Gradient (NAG)
§ Adagrad
§ Adadelta
§ RMSProp
§ Adaptative Moment Esimation (Adam)
§ Adamax
§ Adaptive Gradient Descent
§ Momentum Gradient Decents
§ Nadam
§ AMSGrad

The Backpropagation Algorithm

§ Backpropagation is a method used to calculate efficiently the gradient
of the cost function and adjust the connection weights & the biases to
reduce the error during the learning process

§ Backpropagation calculates gradient of the cost function with respect to
each weight & bias by applying the chain rule, computing the gradient
one layer at a time, iterating backwards from the last layer to the first
one

§ Weights & biases are updated by means of methods such as e.g. gradient
descent, stochastic gradient descent or other methods

1. In a feed-forward ANN information
propagates sequentially from through
all the layers form the input to the
output ones

2. The error (also known as cost or loss
function) is evaluated

3. The error is propagated backwards to
determine the new values of the fitting
parameters at each layer & neuron

4. Steps 1 to 3 are repeated iteratively
until a small error is reached

The Backpropagation Algorithm: General Scheme

The Backpropagation Algorithm: Main Ingredients
Before presenting the backpropagation algorithm let us first recall the notation and present the main
ingredients:

§ 𝜔)*+ : weight between the neuron k-th in the layer (l-1)-th and the neuron j-th in the layer l-th

§ 𝑏)+: bias of neuron j-th in the layer l-th

§ 𝑎)+ = 𝑓 𝑧)+ : activation (output) of neuron j-th in the layer l-th (note that 𝑎), = <𝑦))

§ 𝑧)+ = ∑*𝜔)*+ 𝑎*+-# + 𝑏)+ ∶weighted input to the activation function of neuron j-th in the layer l-th

layer (l-1)-th layer l-th

𝑎CD'& 𝑎(
D

A little change ∆𝑧$% in the weighted input of neuron j-th in the layer l-th will propagate through later layers in
the network, finally causing the overall cost to change by an amount &'

&(K
L ∆𝑧$%,where &'

&(K
L can be interpreted as

a measurement the of the error of neuron j-th in the layer l-th

𝛿(
D ≡

𝜕𝐶
𝜕𝑧(

D =
𝜕𝐶
𝜕𝑎(

D

𝜕𝑎(
D

𝜕𝑧(
D =

𝜕𝐶
𝜕𝑎(

D 𝑓′ 𝑧(
D (BP1)

The Backpropagation Algorithm: Main Ingredients

Since the weighted inputs in the layer (l+1)−th depends on the weighted inputs of the previous layer l-th,
we can write

𝛿(
D ≡

𝜕𝐶
𝜕𝑧(

D =1
C

𝜕𝐶
𝜕𝑧C

DF&
𝜕𝑧CDF&

𝜕𝑧(
D =1

C

𝛿CDF&
𝜕𝑧CDF&

𝜕𝑧(
D

Now, from 𝑧)%*+ = ∑$𝜔)$%*+𝑎$% + 𝑏)%*+ we have

And therefore, the gradient of the cost function is simply given by

𝜕𝐶
𝜕𝜔(C

D =
𝜕𝐶
𝜕𝑧(

D

𝜕𝑧(
D

𝜕𝜔(C
D = 𝛿(

D𝑎CD'&

𝜕𝑧CDF&

𝜕𝑧(
D = 𝜔C(

DF&𝑓′ 𝑧(
D 𝛿(

D =1
C

𝛿CDF& 𝜔C(
DF&𝑓′ 𝑧(

D

𝜕𝐶
𝜕𝑏(

D =
𝜕𝐶
𝜕𝑧(

D

𝜕𝑧(
D

𝜕𝑏(
D = 𝛿(

D

(BP2)

(BP3) (BP4)

The Backpropagation Algorithm: Summary
The backpropagation equations (BP1)-(BP4) provide us with a fast way of computing the gradient of the
cost function and adjusting the weights & biases. Let’s explicitly write it in the form of an algorithm

1. Input x: set the corresponding activation 𝑎(
& = 𝑥(for each neuron j-th of the input layer

2. Feedforward: for each layer 𝑙 = 2, 3,⋯ , 𝐿 compute 𝑧(
D = ∑C𝜔(C

D 𝑎CD'& + 𝑏(
D and 𝑎(

D = 𝑓 𝑧(
D

3. Output error 𝛿(M: compute the error of each neutron of the last layer L, 𝛿(M =
NA
O+
, 𝑓

P 2+
,
= NA

N QR+
𝑓P 𝑧(M

4. Backpropagate the error: for each layer 𝑙 = 𝐿 − 1, 𝐿 − 2,⋯ , 2 compute 𝛿(
D = ∑C 𝛿CDF&𝜔C(

DF&𝑓′ 𝑧(
D

5. Gradient of the cost function: &'
&,KS

L = 𝛿$%𝑎)%-+ ,
&'
&.K

L = 𝛿$%

6. Update the weights & biases: 𝜔$)% → 𝜔$)% − 𝜂 &'
&,KS

L , 𝑏$% → 𝑏$% −
&'
&.K

L

7. Repeat steps 2 to 6 till convergence is achieved

In which sense is Backpropagation a fast algorithm ?
To answer this question, suppose we want to compute the gradient of the cost function C by simply using the
approximation

𝜕𝐶
𝜕𝑤(C

D ≈
𝐶 𝜔(C

D − 𝜖𝑒(C
D , 𝑏(

D − 𝐶 𝜔(C
D , 𝑏(

D

𝜖
,

𝜕𝐶
𝜕𝑏(

D ≈
𝐶 𝜔(C

D , 𝑏(
D − 𝜖𝑒(

D − 𝐶 𝜔(C
D , 𝑏(

D

𝜖

where 𝜖 > 0 is a small positive number and 𝑒$)% 𝑒$% is a unit vector in the direction of 𝜔$)% 𝑏$%

This looks very promissing, we only have to compute 𝐶 𝜔$)% , 𝑏$% , 𝐶 𝜔$)% − 𝜖𝑒$)% , 𝑏$% and 𝐶 𝜔$)% , 𝑏$% − 𝜖𝑒$%

for each distincts weight 𝜔$)% and bias 𝑏$% . However, this is extremelly expensive computationally
speaking, specially for neural networks with a exteme large number (millions) of weights and biases

What is clever about the backpropagation algorithm is that it enables us to compute simultaneously all the
partial derivatives 𝝏𝑪

𝝏𝒘𝒋𝒌
𝒍 and 𝝏𝑪

𝝏𝒃𝒋
𝒍 using just one forward pass through the network followed by one

backward pass through the network, i.e., the computational cost of the forward and backward passes is the
same. The numerical cost of backpropagation is roughly the same as making just two forward passes

Overfitting of an ANN

• A major issue in the development of an ANN is
overfitting (also known as overtraining), which
basically means that the network, due to its high
flexibility to approximate complex non-linear
functions, tries to fit the data entirely and ends up
memorizing all the data patterns.

Underfitting Optimal Overfitting

• Due to overfitting the predictability of the network
on testing data becomes questionable

• Strategies to avoid overfitting include among others:

Ø early stopping of the training: stops the training process once the model performance stops improving on the validation dataset

Ø dropout: reduce overfitting by dropping randomly neurons from the neural network during training in each iteration

• In addition to these which can be used together, overfitting can be reduced by:

Ø enlarging the input dataset (specially in those case where the input dataset is not large enough)

Ø adding noise to the input dataset making the network less able to memorize data patterns since they change randomly during the
training

Bayesian Neural Networks (BNN)
§ In the Bayesian approach, the Neural Neywork parameters 𝝎 (weigts & biases) are described probabilistically

Suppose we have a set of data 𝐷 = 𝑥#, 𝑦# , 𝑥%, 𝑥% ,⋯ , 𝑥. , 𝑦. where 𝑥*and 𝑦* (𝑘 = 1,2,⋯, N) are input and output data and n
is the number of data. Then the probability distribution of w after the data D are taken into account, the posterior
distribution 𝑝 𝜔 𝐷 , is given based on Bayes’s theorem

𝑝 𝜔 𝐷 =
𝑝 𝐷 𝜔 𝑝 𝜔

𝑝 𝐷 ∝ 𝑝 𝐷 𝑤 𝑝 𝜔
§ 𝑝 𝑤 : prior distribtion based on our background knowledge

§ 𝑝 𝐷 𝜔 : likelihood function usually assumed to be a Gaussian distribution
𝑝 𝐷 𝜔 = 𝑒𝑥𝑝 − K/-

% , with

§ 𝑝 𝐷 : normalizartion constant which ensures the posterior distribution is a
valid probability density and integrates to 1

𝜒% = ∑!"#. 0 2⃗;4 -5*
65*

%
, 𝑆 𝑥⃗;𝜔 = a +∑)"#7 𝑏) 𝑓 𝑐) +∑!"#8 𝑑)!𝑥!

With the posterior distribution the BNN prediction can be calculated by

𝑆 = w𝑆 𝑥⃗; 𝜔 𝑝 𝜔 𝐷 𝑑𝜔

Other Machine Learning Techiniques

Implementation of Machine Learning: TensorFlow & Pytorch

§ TensorFlow is a free and open-source sofware library for machine learning and artificial
intelligence

§ Developed by the Google Brain team for internal Google use in research and production,
the initial version was released under the in 2015 Google released the updated version of
TensorFlow, named TensorFlow 2.0, in September 2019

§ It can be used in a wide variety of programming languages, most notably Python, as well
as Javascript, C++, and Java

§ PyTorch is an open source machine learning framework based on the used for applications
such as computer vision and natural language processing

§ Although the Python interface is more polished and the primary focus of development,
PyTorch also has a C++ interface

§ Primarily developed by Meta AI (Facebook), initialliy released in September 2016

§ It can be used in Google Colab (https://colab.research.google.com)

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjcneCHx4X6AhXChP0HHe3nAO0QFnoECAIQAQ&url=https%3A%2F%2Fcolab.research.google.com%2F&usg=AOvVaw3A5aPK2kLFzKOzb6sOckVw

² You for your time & attention

² The organizers for their invitation

