Status of the $B_s \rightarrow D_s K^{\mp}$ benchmark analysis

Federica Cuna, Marco Scodeggio

IDEA Physics and Software Meeting

April 2022

$B_S \rightarrow D_S^{\pm} K^{\mp} \rightarrow (KK\pi^{\pm}) K^{\mp}$

Signal MC samples

$$B_S \rightarrow D_S K^{\pm} \rightarrow (KK\pi^{\pm}) K^{\pm}$$

```
Exclusive Z \rightarrow b\bar{b} with

10k events @ \sqrt{s} = 91.188 GeV
```

```
Inclusive Z \rightarrow b\bar{b}
10k events @ \sqrt{s} = 91.188 GeV
```

```
#
Decay B_s0
1.000 MyD_s- K+ PHSP;
Enddecay
CDecay anti-B_s0
#
Decay MyD_s-
1.000 Myphi pi- PHSP;
Enddecay
CDecay MyD_s+
#
Decay Myphi
1.000 K+ K- VSS;
Enddecay
#
End
```

Signal MC samples

$$B_S \rightarrow D_S K^{\mp} \rightarrow (KK\pi^{\pm}) K^{\mp}$$

Inclusive $Z \rightarrow b\bar{b}$ Ok events @ $\sqrt{s} = 91.188$ GeV

```
#
Decay B_s0
   1.000 MyD_s- K+ PHSP;
Enddecay
CDecay anti-B_s0
#
Decay MyD_s-
   1.000 Myphi pi- PHSP;
Enddecay
CDecay MyD_s+
#
Decay Myphi
   1.000 K+ K- VSS;
Enddecay
#
End
```


$$B_S \to D_S^{\pm} = (KK\pi^{\pm}) K^{\mp}$$

Identified the D±_s final state Simple selection

$$n_K = 2$$

$$n_{\Pi} = 1$$

$$|Q_{Tot}| = 1$$

$$Q_{KK} = 0$$

$$B_S \to D_S^{\pm} = (KK\pi^{\pm}) K^{\mp}$$

Identified the D^{\pm}_{s} final state Simple selection

$$n_K = 2$$
 $n_{\Pi} = 1$
 $|Q_{Tot}| = 1$
 $Q_{KK} = 0$

D_s identification through the ККп vertex reconstruction

$$B_S \to D_S^{\pm} = (KK\pi^{\pm}) K^{\mp}$$

Identified the D±_s final state Simple selection

$$n_{K} = 2$$

$$n_{\Pi} = 1$$

$$|Q_{Tot}| = 1$$

$$Q_{KK} = 0$$

D_s identification through the ККп vertex reconstruction

PID is 100% (i.e. made via PDGid)

$$B_S \to D_S^{\pm} = (KK\pi^{\pm}) K^{\mp}$$

Identified the D±_s final state Simple selection

$$n_{K} = 2$$

$$n_{\Pi} = 1$$

$$|Q_{Tot}| = 1$$

$$Q_{KK} = 0$$

D_s identification through the ККп vertex reconstruction

PID is 100% (i.e. made via PDGid)

$$B_S \rightarrow D_S^{\pm} = (KK\pi^{\pm}) K^{\mp}$$

Purely combinatorial

Combine the **D**[±]_s candidates with the **K**[∓] requesting

$$|Q_{Tot}| = 1$$

Despite main peak clearly visible, there is a heap in the low invariant mass region

Reconstructed Bo_s mass

$$B_S \rightarrow D_S^{\pm} = (KK\pi^{\pm}) K^{\mp}$$

Many possible reasons:

D_s not correctly identified
Kaons mixed
The two hemispheres confused

Despite main peak clearly visible, there is a heap in the low invariant mass region

$$B_S \to D_S^{\pm} = (KK\pi^{\pm}) K^{\mp}$$

If D_s get truth-matched, the low mass heap decreases

Though a small contribution is still present

$$B_S \rightarrow D_S^{\pm} = (KK\pi^{\pm}) K^{\mp}$$

$$B_S \to D_S^{\pm} = (KK\pi^{\pm}) K^{\mp}$$

In any case...
the **heap** seems to be coming from **combinatorial** combinations of K + KKn

$$B_S \to D_S^{\pm} = (KK\pi^{\pm}) K^{\mp}$$

Thought of dividing the K into 2 sub-groups

 D_s - Kaons "prompt-" Kaons (i.e. coming from B_s)

To do so, use φ mass as discriminating values

$$B_S \to D_S^{\pm} = (KK\pi^{\pm}) K^{\mp}$$

Thought of dividing the K into 2 sub-groups

D_s - Kaons "prompt-" Kaons

To do so, use φ mass as discriminating values

NB

The "best" φ mass is always selected

Status

$$B_S \to D_S^{\pm} = (KK\pi^{\pm}) K^{\mp}$$

Status PID

REMINDER

We did not have all the necessary ingredients:

- 1. dE/dx in Delphes
- 2. dN/dx in EDM4HEP (recently added by Clements)
- 3. dN/dx in key4SimDelphes

Regarding the first item

A function which gives the energy loss by a track at different $\beta\gamma$ was inserted in TrackUtil method A method to evaluate the energy loss cell per cell is being tested A method to evaluate the truncated mean for the particle identification was added

NEW

dE/dx is in Delphes... some checks to do, but we're almost there

$$B_S \rightarrow D_S K^{\mp} \rightarrow (KK\pi^{\pm}) K^{\mp}$$

http://fcc-physics-events.web.cern.ch/fcc-physics-events/Delphesevents_dev_IDEA.php

NB

These data sets can be good for 100% PID

Will be re-run once FC's PID is there

Main mode	Decay chain	Background	Decay chain
		mode	
$B_s \to D_s^{\pm} K^{\mp}$	$D_s^{\pm} \to \phi \pi^{\pm}, \phi \to K^+ K^-$ $D_s^{\pm} \to \phi \rho^{\pm}, \phi \to K^+ K^-$	$B_s \rightarrow D_s^{*\pm} K^{\mp}$	$D_s^{*\pm} o \gamma\phi\pi^{\pm}$, $\phi o K^+K^-$
	$D_s^{\pm} o \phi ho^{\pm}$, $\phi o K^+K^-$	· ·	$D_s^{*\pm} o \gamma \phi ho^{\pm}$, $\phi o K^+K^-$, $ ho^{\pm} o \pi^{\pm}\pi^0$
		$B_s \to D_s^{\pm} K^{*\mp}$	$D_s^{\pm} o \phi \pi^{\pm}, \phi o K^+ K^-, K^{*\mp} o K^{\mp} \pi^0$
		"	$D_s^{\pm} \to \phi \rho^{\pm}, \phi \to K^+ K^-, \rho^{\pm} \to \pi^{\pm} \pi^0, K^{*\mp} \to K^{\mp} \pi^0$
		$B_s \rightarrow D_s^{\pm} \pi^{\mp}$	$D_S^{\pm} o \phi \pi^{\pm}$, $\phi o K^+ K^-$
		"	$D_s^{\pm} o \phi ho^{\pm}, \phi o K^+ K^-, ho^{\pm} o \pi^{\pm} \pi^0$
		$B_s \rightarrow D_s^{\pm} \rho^{\mp}$	$D_s^{\pm} o \phi \pi^{\pm}, \phi o K^+ K^-, \rho^{\mp} o \pi^{\mp} \pi^0$
		$B^0 \rightarrow D_s^{\pm} K^{\mp}$	$D_S^{\pm} o \phi \pi^{\pm}, \phi o K^+ K^-$
		"	$D_s^{\pm} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
		$\Lambda_b^0 \rightarrow D_s^- p^+$	$D_S^{\pm} o \phi \pi^{\pm}$, $\phi o K^+ K^-$
		· ·	$D_s^{\pm} o \phi ho^{\pm}, \phi o K^+ K^-, ho^{\pm} o \pi^{\pm} \pi^0$
		$\Lambda_b^0 \to D_s^{*-} p^+$	$D_s^{\pm} \rightarrow \gamma \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$
		· ·	$D_s^{\pm} o \gamma \phi ho^{\pm}$, $\phi o K^+K^-$, $\rho^{\pm} o \pi^{\pm}\pi^0$

Deep into the **analysis**, added some functions the FCCSW classes... might *push* them at some point

Despite PID is 100% correct, **B**⁰_s & **D**[±]_s mass have been **reconstructed**

Some few refinements need to be put into the B^0_s (and the ϕ) mass

Next Steps

Add the PID

(cannot give a time on this, will interface with FC)

Implement(ing) vertex reconstruction at the B^o_s level (few weeks)

Deep into the **analysis**, added some functions the FCCSW classes... might *push* them at some point

Despite PID is 100% correct, **B**⁰_s & **D**[±]_s mass have been **reconstructed**

Some few refinements need to be put into the B^0_s (and the ϕ) mass

Next Steps

Add the PID

(cannot give a time on this, will interface with FC)

Implement(ing) vertex reconstruction at the B_s level (few weeks)

Deep into the **analysis**, added some functions the FCCSW classes... might *push* them at some point

Despite PID is 100% correct, **B**⁰_s & **D**[±]_s mass have been **reconstructed**

Next Steps

Add the PID

(cannot give a time on this, will interface with FC)

Implement(ing) vertex reconstruction at the B_s level (few weeks)

Deep into the **analysis**, added some functions the FCCSW classes... might *push* them at some point

Despite PID is 100% correct, **B**⁰_s & **D**[±]_s mass have been **reconstructed**

Some few refinements need to be put into the B_s (and the ϕ) mass

Next Steps

Add the PID

(cannot give a time on this, will interface with FC)

Implement(ing) vertex reconstruction

at the B₀s level (<u>few weeks</u>)

Deep into the **analysis**, added some functions the FCCSW classes... might *push* them at some point

Despite PID is 100% correct, **B**⁰_s & **D**[±]_s mass have been **reconstructed**

Some few refinements need to be put into the B_s (and the ϕ) mass

Next Steps

Add the PID

(cannot give a time on this, will interface with FC)

Implement(ing) vertex reconstruction at the B_s^0 level ($few\ weeks$)

Reproduce the plots of the Bos reconstructed mass on the right[3]

Ref. [3] describes a generic FCC scenario, so it would be useful to see them within EDM4hep

Thank you for the attention!

