Status of the $\mathbf{B O}_{s} \rightarrow \mathbf{D}^{ \pm} \mathbf{K}^{\mp}$ benchmark analysis

Federica Cuna, Marco Scodeggio

IDEA Physics and Software Meeting
April 2022
$\mathbf{B}^{\mathbf{0}} \rightarrow \mathbf{D}^{ \pm} \mathbf{N}^{\boldsymbol{j}}{ }^{\mp} \rightarrow\left(\mathbf{K K} \pi^{ \pm}\right) \mathbf{K}^{\mp}$

Signal MC samples

$$
\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{~K}^{\mp} \rightarrow\left(\mathrm{KK} \pi^{ \pm}\right) \mathrm{K}^{\mp}
$$

$\left\{\begin{array}{l}\text { Exclusive } Z \rightarrow b \bar{b} \text { with } \\ 1 \text { Ok events } @ \sqrt{ }=91.188 \mathrm{GeV}\end{array}\right.$
$\left\{\begin{array}{l}\text { Exclusive } Z \rightarrow b \bar{b} \text { with } \\ 1 \text { Ok events } @ \sqrt{ }=91.188 \mathrm{GeV}\end{array}\right.$

Inclusive $Z \rightarrow b \bar{b}$
10k events @ $\sqrt{s}=91.188 \mathrm{GeV}$
Enddecay

CDecay anti-B_s0
\#
1.000 Myphi pi- PHSP;

Enddecay
CDecay MyD_s+
Decay Myphi
1.000 K+ K- VSS;

Enddecay
$\#$
End

Signal MC samples

$$
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{~K}^{\mp} \rightarrow\left(\mathrm{KK}^{ \pm}\right) \mathrm{K}^{\mp}
$$

$\{$ Exclusive $Z \rightarrow b \bar{b}$ with

Enddecay

CDecay anti-B_s0
\#
Decay MyD_s-
1.000 Myphi pi- PHSP;

Enddecay
CDecay MyD_s+
\#
Decay Myphi
$1.000 \mathrm{~K}+\mathrm{K}-\mathrm{VSS}$;
Enddecay
\#

Inclusive $Z \rightarrow b \bar{b}$
${ }^{1}$ Ok events @ $\sqrt{s}=91.188 \mathrm{GeV}$ IncMC

SigMC

Status

$\left.\mathrm{B}_{\mathrm{s}} \rightarrow \mathbf{D}^{ \pm} \mathrm{K}^{\mp} \rightarrow \mathbf{(K K} \boldsymbol{\pi}^{ \pm}\right) \mathrm{K}^{\mp}$

Identified the $D{ }^{ \pm}$final state Simple selection

$$
\begin{aligned}
\mathrm{n}_{\mathrm{K}} & =2 \\
\mathrm{n}_{\mathrm{K}} & =1 \\
\mid \mathrm{O}_{\text {Tott }} & =1 \\
\mathrm{Q}_{\mathrm{KK}} & =0
\end{aligned}
$$

SigMC

Status

$\mathrm{B}_{\mathrm{s}}{ }^{\boldsymbol{s}} \mathbf{D}^{ \pm}{ }_{\mathrm{s}} \mathrm{K}^{\mp} \rightarrow \mathbf{(\mathbf { K K } \boldsymbol { \pi } ^ { \pm }) \mathrm { K } ^ { \mp }}$

Identified the $D^{ \pm}$sinal state Simple selection

$$
\begin{gathered}
\mathrm{n}_{\mathrm{K}}=2 \\
\mathrm{n}_{\Pi}=1 \\
\left|\mathrm{Q}_{\text {Tot }}\right|=1 \\
\mathrm{Q}_{\text {KK }}=0
\end{gathered}
$$

D_{s} identification through the ККп vertex reconstruction

SigMC

Status

Identified the $D{ }_{s}$ final state Simple selection

$$
\begin{aligned}
\mathrm{n}_{\mathrm{K}} & =2 \\
\mathrm{n}_{\mathrm{H}} & =1 \\
\mid \mathrm{O}_{\text {Tott }} & =1 \\
\mathrm{Q}_{\mathrm{KK}} & =0
\end{aligned}
$$

D_{s} identification through the ККп vertex reconstruction

PID is 100%
(i.e. made via PDGid)

IncMC

Status

$\mathrm{B}_{\mathrm{s}}{ }^{\boldsymbol{l}} \mathbf{D}^{ \pm}{ }_{\mathrm{s}} \mathrm{K}^{\mp} \rightarrow\left(\mathbf{K K} \pi^{ \pm}\right) \mathrm{K}^{\mp}$

Identified the $\mathrm{D}^{ \pm}$final state Simple selection

$$
\begin{gathered}
\mathrm{n}_{\mathrm{K}}=2 \\
\mathrm{n}_{\Pi}=1 \\
\left|\mathrm{Q}_{\mathrm{Tot}}\right|=1 \\
\mathrm{Q}_{\mathrm{KK}}=0
\end{gathered}
$$

D_{s} identification through the ККп vertex reconstruction

PID is 100%
(i.e. made via PDGid)

SigMC

Status

$\left.\mathrm{B}_{\mathrm{s}} \rightarrow \mathbf{D}^{ \pm} \mathbf{K}^{\mp} \rightarrow \mathbf{(K K} \boldsymbol{\pi}^{ \pm}\right) \mathrm{K}^{\mp}$

Purely combinatorial
Combine the $\mathbf{D} \pm_{s}$ candidates with the \mathbf{K}^{\mp} requesting

$$
\left|\mathrm{Q}_{\text {Tot }}\right|=1
$$

Despite main peak clearly visible, there is a heap in the low invariant mass region

SigMC

Status

$\mathrm{B}_{\mathrm{s}}{ }^{\boldsymbol{u}} \mathbf{D}^{ \pm}{ }_{\mathrm{s}} \mathrm{K}^{\mp} \rightarrow \mathbf{(\mathbf { K K } \pi ^ { \pm }) \mathrm { K } ^ { \mp }}$

Many possible reasons:
D_{s} not correctly identified
Kaons mixed
The two hemispheres confused ...

Despite main peak clearly visible, there is a heap in the low invariant mass region

SigMC

Status

$\mathrm{B}_{\mathrm{s}}{ }^{\boldsymbol{s}} \mathbf{D}^{ \pm}{ }_{\mathrm{s}} \mathrm{K}^{\mp} \rightarrow \mathbf{(\mathbf { K K } \boldsymbol { \pi } ^ { \pm }) \mathrm { K } ^ { \mp }}$

SigMC

Status

$\left.\mathrm{B}^{0}{ }_{\mathrm{s}} \rightarrow \mathbf{D}^{ \pm} \mathbf{N}^{\boldsymbol{}}{ }^{\mp} \rightarrow \mathbf{(K K} \boldsymbol{\pi}^{ \pm}\right) \mathrm{K}^{\mp}$

If D_{s} get truth-matched, the low mass heap decreases

Though a small contribution is still present

Thought of dividing the K into 2 sub-groups
D_{s} - Kaons
"prompt-" Kaons (i.e. coming from B_{s})

Status

IncMC

$$
\mathrm{B}_{\mathrm{s}} \rightarrow \mathbf{D}_{\mathrm{s}} \mathrm{~K}^{\mp} \rightarrow\left(\mathbf{K K} \boldsymbol{\pi}^{ \pm}\right) \mathrm{K}^{\mp}
$$

In any case...
the heap seems to be coming from combinatorial combinations of $K+$ ККп

SigMC

Status

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathbf{D}{ }^{ \pm} \mathrm{K}^{\mp} \rightarrow\left(\mathbf{K K} \boldsymbol{\pi}^{ \pm}\right) \mathrm{K}^{\mp}$

Thought of dividing the K into 2 sub-groups
D_{s} - Kaons
"prompt-" Kaons (i.e. coming from B_{s})

To do so, use φ mass as discriminating values

SigMC

Status

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathbf{D}^{ \pm} \mathrm{S}^{\mp} \rightarrow \mathbf{(\mathbf { K K } \boldsymbol { \pi } ^ { \pm }) \mathrm { K } ^ { \mp }}$

Thought of dividing the K into 2 sub-groups
D_{s} - Kaons
"prompt-" Kaons

To do so, use φ mass as discriminating values

Status

IncMC

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathbf{D}^{ \pm} \mathrm{K}^{\mp} \rightarrow \mathbf{(\mathbf { K K } \boldsymbol { \pi } ^ { \pm }) \mathrm { K } ^ { \mp }}$

NB

The "best" φ mass is always selected

Status
 PID

REMINDER

We did not have all the necessary ingredients:

1. $\mathrm{dE} / \mathrm{dx}$ in Delphes
2. $\mathrm{dN} / \mathrm{dx}$ in EDM4HEP (recently added by Clements)
3. $\mathrm{dN} / \mathrm{dx}$ in key4SimDelphes

Regarding the first item
A function which gives the energy loss by a track at different $\beta \gamma$ was inserted in TrackUtil method A method to evaluate the energy loss cell per cell is being tested
A method to evaluate the truncated mean for the particle identification was added

NEW

$\mathrm{dE} / \mathrm{dx}$ is in Delphes... some checks to do, but we're almost there

Full MC

Status

$\mathrm{B}_{\mathrm{s}}{ }^{\mathbf{~}} \mathbf{D}^{ \pm}{ }_{\mathrm{s}} \mathrm{K}^{\mp} \rightarrow \mathbf{(\mathbf { K K } \boldsymbol { \pi } ^ { \pm })} \mathrm{K}^{\mp}$

http://fcc-physics-events.web.cern.ch/fcc-physics-events/Delphesevents_dev_IDEA.php

	Main mode	Decay chain	Background mode	Decay chain
N	$\boldsymbol{B}_{s} \rightarrow D_{s}^{ \pm} K^{\mp}$	$D_{s}^{ \pm} \rightarrow \phi \pi^{ \pm}, \phi \rightarrow K^{+} K^{-}$	$\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{* \pm} \boldsymbol{K}^{\mp}$	$D_{S}^{* \pm} \rightarrow \gamma \phi \pi^{ \pm}, \phi \rightarrow K^{+} K^{-}$
NB	"	$D_{S}^{ \pm} \rightarrow \phi \rho^{ \pm}, \phi \rightarrow K^{+} K^{-}$	"	$D_{S}^{* \pm} \rightarrow \gamma \phi \rho^{ \pm}, \phi \rightarrow K^{+} K^{-}, \rho^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$
			$\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{ \pm} \boldsymbol{K}^{* \mp}$	$D_{s}^{ \pm} \rightarrow \phi \pi^{ \pm}, \phi \rightarrow K^{+} K^{-}, K^{* \mp} \rightarrow K^{\mp} \pi^{0}$
These data sets			"	$D_{S}^{ \pm} \rightarrow \phi \rho^{ \pm}, \phi \rightarrow K^{+} K^{-}, \rho^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}, K^{* \mp} \rightarrow K^{\mp} \pi^{0}$
can be good for 100\% PID			$\boldsymbol{B}_{s} \rightarrow D_{s}^{ \pm} \boldsymbol{\pi}^{\mp}$	$D_{s}^{ \pm} \rightarrow \phi \pi^{ \pm}, \phi \rightarrow K^{+} K^{-}$
			"	$D_{s}^{ \pm} \rightarrow \phi \rho^{ \pm}, \phi \rightarrow K^{+} K^{-}, \rho^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$
			$\boldsymbol{B}_{s} \rightarrow D_{s}^{ \pm} \boldsymbol{\rho}^{\bar{\mp}}$	$D_{S}^{ \pm} \rightarrow \phi \pi^{ \pm}, \phi \rightarrow K^{+} K^{-}, \rho^{\bar{\mp}} \rightarrow \pi^{\mp} \pi^{0}$
Will be re-run o			$B^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$	$D_{S}^{ \pm} \rightarrow \phi \pi^{ \pm}, \phi \rightarrow K^{+} K^{-}$
FC's PID is the			"	$D_{S}^{ \pm} \rightarrow \phi \rho^{ \pm}, \phi \rightarrow K^{+} K^{-}, \rho^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$
FCs PID is there			$\Lambda_{b}^{0} \rightarrow D_{s}^{-} p^{+}$	$D_{S}^{ \pm} \rightarrow \phi \pi^{ \pm}, \phi \rightarrow K^{+} K^{-}$
			"	$D_{S}^{ \pm} \rightarrow \phi \rho^{ \pm}, \phi \rightarrow K^{+} K^{-}, \rho^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$
			$\Lambda_{b}^{0} \rightarrow D_{s}^{*-} p^{+}$	$D_{S}^{ \pm} \rightarrow \gamma \phi \pi^{ \pm}, \phi \rightarrow K^{+} K^{-}$
			"	$D_{S}^{ \pm} \rightarrow \gamma \phi \rho^{ \pm}, \phi \rightarrow K^{+} K^{-}, \rho^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$

Conclusion and Outlook

Conclusion and Outlook

Deep into the analysis, added some functions the FCCSW classes... might push them at some point

ave been reconstructed

into the $\mathbf{B O}_{\mathbf{s}}$ (and the $\boldsymbol{\varphi}$) mass
Mant Staps
Add the PID

Implement(ing) vertex reconstruction

Conclusion and Outlook

Deep into the analysis, added some functions the FCCSW classes... might push them at some point

Despite PID is $\mathbf{1 0 0 \%}$ correct, $\mathbf{B O}_{\mathbf{s}} \boldsymbol{\&} \mathbf{D} \mathbf{D}_{\mathbf{s}}$ mass have been reconstructed

Some few refinements need to be put into the $\mathbf{B O}_{\mathbf{s}}$ (and the $\boldsymbol{\varphi}$) mass

Conclusion and Outlook

Deep into the analysis, added some functions the FCCSW classes... might push them at some point

Despite PID is 100% correct, $\mathbf{B}_{\mathbf{s}} \boldsymbol{\&} \mathbf{D} \mathbf{D}_{\mathbf{s}}$ mass have been reconstructed

Some few refinements need to be put into the $\mathbf{B O}_{\mathbf{s}}$ (and the $\boldsymbol{\varphi}$) mass

Next Steps

Add the PID

(cannot give a time on this, will interface with FC)

Implement(ing) vertex reconstruction

at the B_{s} level (few weeks)

Conclusion and Outlook

Deep into the analysis, added some functions the FCCSW classes... might push them at some point

Despite PID is 100% correct, $\mathbf{B o}_{\mathbf{s}} \& \mathbf{D}^{\mathbf{m}} \mathbf{s}$ mass have been reconstructed

Some few refinements need to be put into the $\mathbf{B O}_{\mathbf{s}}$ (and the $\boldsymbol{\varphi}$) mass

Next Steps

Add the PID

(cannot give a time on this, will interface with FC)

Implement(ing) vertex reconstruction

Reproduce the plots of the BO_{s} reconstructed mass on the right ${ }^{[3]}$

Ref. [3] describes a generic FCC scenario, so it would be useful to see them within EDM4hep
 at the B_{s} level (few weeks)

Thank you
for the attention!

