

66th INFN ELOISATRON WORKSHOP: New gas mixtures for RPC and MRPC detectors

Investigation on eco-friendly gas mixtures for Multigap-RPCs at CBM

Ingo Deppner

Physikalisches Institut, Heidelberg University

22.11.2022

- Introduction to FAIR/CBM/CBM-TOF
- Test results with standard gas mixture
- Investigation on eco friendly gas mixtures for timing MRPCs
- Gas-aging in a high rate environment
- Test results with modified gas mixture based on Tetrafluorethane
- Conclusions for the CBM TOF and its gas system
- Summary

CBM ready for beam

SIS100 ready for beam

Introduction FAIR

Q2.2027

2028

Introduction CBM

Compressed Baryonic Matter (CBM) Experiment

- Tracking acceptance: $2.5^{\circ} < \theta_{Lab} < 25^{\circ}$
- Peak R_{int} is 10 MHz for Au+Au (300 kHz for MVD)
- Fast & radiation hard detectors
- Free-streaming DAQ
- 4D tracking (space, time)
- Online event reconstruction and selection
- Data rate: 1 TB/sec

Introduction CBM TOF

FLUKA simulation: Au + Au collisions at E_{kin} = 11 AGeV, 10⁷ interactions Charged particle flux at a distance of 8 m from the target

<u>CBM-TOF Requirements</u>

- > Full system time resolution $\sigma_T \sim 80$ ps
- Efficiency > 95 %
- > Rate capability \leq 50 kHz/cm²
- Polar angular range 2.5° 25°
- > Active area of 120 m²
- > Occupancy < 5 %</p>
- Low power electronics (~100.000 channels)
- Free streaming data acquisition

Multi-gap Resistive Plate Chambers (MRPC) are the most suitable TOF detectors fulfilling our requirements

Introduction CBM TOF

M4 Module (HD)

•

Full size counter with • close to final design for all regions build and tested

M4 and M6 full size modules constructed and installed at **mCBM**

CBM-TOF MRPCs

- ≻ 230 Modules
- > About 1500 MRPC
- About 100000 readout channel

> Multi-gap RPC with 8 – 10 gaps with gap size of 200 – 250 μ m > MRPC size ranging from 180 cm² up to 1700 cm²

> Initially planed gas mixture: R134a/iso-Butan/SF₆: 90%/5%/5%

Environmental impact of TOF gas

Parameters for one CBM TOF refill (125 m³ gas)

CBM

gas	Isobu- tane	Reclin [®] R134a	Sulfur- hexafluo	Greenhouse Gas Comparison	Л
			ride	Preventing emission of 1 kg (2.2 lbs) of SF ₆ has the equivalent environmental T CBIV	vI- ∽fill
chemical structure	i-C ₄ H ₁₀	$C_2H_2F_4$	SF ₆		em
GWP	20	1430	22800	Removing 5 vehicles from the road for an entire year 500	0
fraction	5%	90%	5%	or	
partial volume [m ³]	6.25	112.5	6.25	Preventing the burning of 11 metric tons of coal	0
density at 1013 mbar [kg/m ³] (15 °C)	2,5	4,4	6,2	or Eliminating the combustion	
portion [kg]	15.625	495	38.75	of 54 barrels of oil	0
CO ₂ equivalent [tons]	0.047	707.9	910.6	LE Switchgear Committee 2018 John G. Owens, 3M, Greenhouse Gas Emission Reductions from Electric Power Equipment through Use of Sustainable Alternatives to SF6	
price [Euro]		11500 (23 Euro/kg)		due to the high GWPs \Rightarrow - Alternative gases (HFO) - Reduction of SE6	

- Gas recycling

Cosmic test results (low rate)

R134a/iso-Butan/SF₆: 90%/5%/5%

Alternative gas search in CBM TOF

Working point with standard gas mixture is at 5400 V

(a) Pure HFO-1234ze
(b) HFO/i-C₄H₁₀/SF₆ 90/5/5
(c) HFO/SF₆ 95/5
(d) HFO/i-C₄H₁₀ 97/3
(e) HFO/i-C₄H₁₀ 95/5
(f) HFO/i-C₄H₁₀ 90/10

Alternative gas search in CBM TOF

CBM ToF

- Working point with standard gas mixture is at 5400 V
- Working point is shifted by about 1900 V
- Gas mixtures with HFO fulfil our TOF requirements in terms of efficiency and cluster size

Alternative gas search in CBM TOF

 Working point with standard gas mixture is at 5400 V

CBM

- Working point is shifted by about 1900 V
- Time resolutions in the order of 80 ps to 100 ps were obtained
- Gas mixtures with HFO only in combination with SF₆ fulfil our TOF requirements

CBM

TOF

mCBM test setup at SIS18

FAIR Phase 0: mCBM setup @ SIS18

- mCBM is a full system test setup installed at SIS18/GSI dedicated for high rate detector and readout test including free streaming data acquisition and online event selection
- Charged particle fluxes of up to 30 kHz/cm²

CBM ToF

Aging & gas pollution

Aging & gas pollution

0.21

0.15

0.18

0.1

0.04 0.07

Observations: continuous increase in dark rate (permanent aging)

- Traces of NaF was found on the glass surface
- Dark rate (noise) is generated entirely on spacers
- Electrical field simulations performed

Electrical field simulations

0.28

Gas aging & pollution

High intensity irradiation with gammas at IRASM

Surface facing the cathode

M. Petrovici at al. NIMA 1024 (2022) 166122 surface facing the anode

Mitigation of gas pollution and aging CBM ToF

High rate counter (MRPC1)

Low rate counter (MRPC3/4)

Gas stability comparison

https://agenda.infn.it/event/19942/contributions/108493/attachments/70618/88191/rigoletti rpc2020.pdf

The F⁻ production of the selected ecofriendly gas mixture is ~4 times higher than the standard gas mixture

HFO is breaking ~10 times more easily than R134a

extremely counterproductive in a high rate environment as RPC2022: Measurements of fluoride production in Resistive Plate Chambers

HF Production @ w.p.

mCBM beam time results

MRPC3 (low rate thin float glass counter)

Efficiency of station 4 <eff>: 0.968 10 0.9 Efficiency as function of in 0.8 0.7 100 -10 0.6 95 -10 0 10 90 x(cm) 85 Efficiency 80 75 70 65 60 6000 8000 0 2000 4000 10000 12000 Incident particle flux [Hz/cm²]

Time resolution as function of incident ch. particle flux

MRPC1a (low resistivity glass counter)

No significant change in performance with new gas mixture observed

¹⁸

Conclusions for the CBM TOF gas system

R. Guida, B. Mandelli, G. Rigoletti

- Stay with Tetrafluorethane (R134a) (enhanced F-ion production for HFO in high rate environment)
- Abandon iso-Butan (aging , safety, difficult to recycle)
- Reduce fraction of SF_6 to 2.5% (reduction of GWP, difficult to recycle)
- Increase the flow rate

-12.0 iC4H10

-16.0

-24.

-28

-32

5

Build a recuperation system (reuse of gas, cost reduction, GWP reduction)

0.500 Mole Fraction (R134a)

0.25

- In CBM hadron PID will be realized with the TOF method based on Multigap-RPCs
- With gas mixture based on Tetrafluorethane the counter fulfil the CBM TOF requirements
- At high particle flux gas aging effects were observed mitigation on counters initiated
- Eco-friendly gas mixtures were investigated however, HFO breaks faster than R134a which is not helpful in a high rate environment
- The conclusion for CBM TOF is to stay with R134a and recycle all gas components for reuse
- First concept of a recuperation system was proposed

Thank you for your attention

CBM ToF

Contributing institutions:

Tsinghua	Beijing,
NIPNE	Bucharest,
GSI	Darmstadt,
TU	Darmstadt,
USTC	Hefei,
PI	Heidelberg,
ITEP*	Moscow,
CCNU	Wuhan,

*Cooperation suspended

| bmb+f

Großgeräte der physikalischen Grundlagenforschung

FAIR — Facility for Antiproton and Ion Research in Europe

💻 🕂 🛯 🖂 🛶 🚺 🛶 🚟 🛶 🚟 🍉

Backup slides

