

Transition to eco-friendly RPC detectors for HEP: the experience of the Bari LHCb/SHiP group

Alessandra Pastore (INFN Bari)
on behalf of the Bari LHCb/SHiP group

RPC lab @ INFN Bari

Activities on RPC detectors started for NESSiE and SHiP proposals, at rates O(10²)Hz/cm²

Cosmic test stand:

- up to 12 chambers (~3x1 m²)
 operated in streamer mode for triggering and tracking
- RPC(s) under test

3 gas distribution systems detectors can be operated/tested with different gas mixtures and/or premixed gas

RPCs for the SHiP-SND project

Maximum expected charged particle rate ~400 Hz/cm²

RPC tracking planes sensitive area ~2×4 m²

RPCs for the LHCb Upgrade II project

LHCb detector@ Run 1 and Run 2 of LHC

Muon Detector:

- 400 m² of sensitive area
- M2-M5 MWPC 4-gaps
- $\epsilon_{\mu \text{ID}}$ >95% in 25 ns window >99% in a single station
- ≈ 4 orders of magnitude flux-variability across the sensitive area

RPCs for the LHCb Upgrade II project

expected @ U2

region		max rate (kHz/cm2)	MWPC
M2	R1	998	replace
	R2	98	
	R3	13	replace/reuse
	R4	10	
M3	R1	575	replace
	R2	72	
	R3	8	replace/reuse
	R4	3	
M4	R1	211	replace
	R2	30	
	R3	5	replace/reuse
	R4	2	
M5	R1	179	replace
	R2	20	
	R3	4	replace/reuse
	R4	2	

new detector technologies

- R1-R2 option (exp. rate O(MHz/cm²)): μRWELL
- R4 options (exp. rate several kHz/cm²): RPCs or SCI-Tiles

Ongoing R&D activities

Current studies

Single-gap RPC ~ (1.9 x 1.2) m² X-Y readout

Strip pitch 1cm

R&D on avalanche RPCs (2mm and 1.6 mm-thick gas gaps):

- flushed with Freon-based and Freon-free gas mixtures
- in **Bari** (large area RPCs)
- at CERN GIF++ (smaller area RPC, within the RPC EcoGas@GIF++ Collaboration and AIDAINNOVA)

Experimental set-up in Bari

- FE boards equipped with 2 FEERIC chips (ALICE exp., JINST 9 (2014) C09013)
- Custom FPGA-based readout boards and trigger supervisor
- Trigger provided by 4 chambers (streamer RPCs)
- Tracking

Performance of 2mm large area gaps

- Dimension: \sim (1.9 × 1.2) m²;
- Gap width: 2 mm;
- Readout by 2 panels of orthogonal strips ~1 cm pitch;
- Bakelite electrodes thickness: 2 mm

Towards new-generation RPCs

Future applications (e.g. HL-LHC) require significant progress in detector rate capability and longevity, together with eco-compatibility of the gas mixture

F-gases with high Global Warming Potential in avalanche RPCs standard mixture

First approach: R134a replacement with HFO-1234ze

$$(-24\%)$$

$$(-90\%)$$

Reduction of the impact on the environment wrt STD mix

Investigating the 'HFO' option

Probability cluster size > Threshold (horizontal strips)

The replacement of R134a with HFO results in a significant increase of the operating voltage \Rightarrow addition of CO₂

Investigating the 'HFO-CO2' option

Reduction of the impact on the environment wrt STD mix (70÷90)%

- 25%HFO -20% R134a -49.5% CO₂-5.0% iC₄H₁₀- 0.5% SF₆
- 25%HFO 0% R134a -69.5% CO₂-5.0% iC₄H₁₀- 0.5% SF₆
- 35%HFO 0% R134a -60.0% CO₂-4.5% iC₄H₁₀- 0.5% SF₆
- 35%HFO 0% R134a -60.0% CO₂- 4.0% iC₄H₁₀ -1.0% SF₆

- Arr 95.2% R134a/ 4.5% iC₄H₁₀/ 0.3% SF₆ (standard)
- 60% CO₂/ 35% HFO/ 4.5% iC₄H₁₀/ 0.5% SF₆
- 69.5% CO₂/ 25% HFO/ 5% iC₄H₁₀/ 0.5 % SF₆

Fraction of events with *large charge content* > 10% at the WP increasing very rapidly with applied HV

Investigating the 'HFO-CO2' option

Reduction of the impact on the environment wrt STD mix (70÷90)%

- 25%HFO -20% R134a -49.5% CO₂-5.0% iC₄H₁₀- 0.5% SF₆
- 25%HFO 0% R134a -69.5% CO₂-5.0% iC₄H₁₀- 0.5% SF₆
- 35%HFO 0% R134a -60.0% CO₂-4.5% iC₄H₁₀- 0.5% SF₆
- 35%HFO 0% R134a -60.0% CO₂- 4.0% iC₄H₁₀ -1.0% SF₆

Performance comparable with standard mixture WP still above 11 kV

- **△** 60% CO₂/ 35% HFO/ 4.5% iC₄H₁₀/ 0.5% SF₆
- \triangle 69.5% CO₂/ 25% HFO/ 5% iC₄H₁₀/ 0.5 % SF₆

Investigating the 'HFO-CO₂' option with thinner gaps

Similar gas mixtures were tested using a 1.6 mm thick gap, comparable performance, WP shifted towards lower values

- 95.2% R134a/ 4.5% iC₄H₁₀ / 0.3% SF₆ (standard)
 - 60% CO₂/ 35% HFO/ 4% iC₄H₁₀/ 1% SF₆ (eco2)
- 69% CO₂/ 25% HFO/ 5% iC₄H₁₀/ 1 % SF₆ (eco3)

Studies within the RPC EcoGas@GIF++ Collaboration

Parallel studies ongoing at the CERN Gamma Irradiation Facility with a *small* chamber (1.6 mm thick gap and electrodes)

GIF++

- 137Cs source, activity 14 TBq
- System of filters providing different attenuation factors (ABS)
- Muon beam, energy 100 GeV

Studies within the RPC EcoGas@GIF++ Collaboration

Parallel studies ongoing at the CERN Gamma Irradiation Facility with a *small* chamber (1.6 mm thick gap and electrodes)

GIF++

- TDC readout
- Trigger: two beam scintillators
 + two additional scintillators,
 effective area ~(10 × 10) cm²
- No tracking

Studies within the RPC EcoGas@GIF++ Collaboration

Three mixture tested with several ABS: Std: 95.2% R134a/4.5% iso/0.3% SF₆

Eco2: 60%CO₂/35%HFO/4%iso/1%SF₆ Eco3: 69%CO₂/25%HFO/5%iso/1%SF₆

muon window defined as $[t_{\mu}-3\sigma, t_{\mu}+3\sigma]$

 $Eff = \frac{num.\,events\,with\,at\,least\,one\,hit\,in\,\Delta t}{num\,triggers}$

- → At WP, comparable efficiency (>95%) for all mixtures at Source Off or low irradiation
- \rightarrow efficiency plateau drop at maximum level of irradiation (ABS1) : ϵ_{STD} ~ 2%, ϵ_{ECO2} <5%, ϵ_{ECO3} ~ 8%

- P(Cs>4) at WP comparable for the 3 mixtures
- at (WP+200V), below 5% for std mix and eco2, increased to 8% for eco3

- → At WP, comparable efficiency (>95%) for all mixtures at Source Off or low irradiation
- \rightarrow efficiency plateau drop at maximum level of irradiation (ABS1) : ϵ_{STD} ~ 2%, ϵ_{ECO2} <5%, ϵ_{ECO3} ~ 8%

average of the current values sampled every second both during beam spill and interspill

Currents for ABS 1 at WP with eco-friendly gas mixtures doubled w.r.t. std

Moving towards the source (6 m \rightarrow 3 m)

Long term performance studies at CERN GIF++

Irradiation campaign of RPCs to accumulate an equivalent charge of the HL-LHC Phase Fundamental for the validation of new eco-friendly gas mixtures

RPC EcoGas@GIF++ Coll.

Started in August, with ECO2 mixture within the RPC Ecogas@GIF++ Collaboration currently on-going

Conclusions and Outlooks

- R&D on eco-friendly RPC detectors for medium and high rate HEP applications on-going, both at Bari RPC Lab and at CERN GIF++ within the RPC Ecogas@GIF++ Collaboration and AIDAInnova project
- Different HFO1234ze-based gas mixtures tested with cosmic rays, muon beam and gamma background

Long term performance studies in presence of strong irradiation and HFO-CO2 based mixture are currently on-going at CERN GIF++ within the RPC Ecogas@GIF++ Collaboration

Thank you for your attention