

Ecological gas mixture studies in CMS experiment

D. Piccolo (INFN Frascati) for CMS group

66th INFN ELOISATRON WORKSHOP: New gas mixtures for RPC and MRPC detectors

The search for an ecogas replacement at CMS

L. Benussi, D. Piccolo et al. Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics JINST 13 P03012 (2018)

Laboratory tests started in 2014

A study of HFO-1234ze (1,3,3,3-Tetrafluoropropene) as an eco-friendly replacement in RPC detectors, arXiv:1505.01648

Eco-friendly gas mixtures for Resistive Plate Chambers based on Tetrafluoropropene and Helium *JINST* 11 P08019 (2016)

Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment *JINST* 11 C09018 (2016)

Choice of few candidate mixtures

Tests under irradiation (GIF++)

RPC ECOGAS@GIF++
Collaboration

Laboratory test

Experimental Set-up in Frascati

- single gap RPCs, 2 mm wide gas gap
- 50 x 50 cm²
- Double Pad readout
 - partial cancellation on single mode noise
 - Expected about x2 induced signal charge
- Scintillator layers on top and bottom for trigger

Data taken with oscilloscope

- Gas chromatograph: for gas mixture analysis
- 4 channels Oscilloscope lecroy104xi (5 Gsamples, 1 GHz): for signal readout
 - Full digitization of signal

Frascati test station: Notes on the analysis

- Threshold used for analysis of RPC:
 - Efficiency: $Q_{induced} > 300 fC$ (to be divided for ~2 because of double pad readout) and $|V_{max}| > 0.4 mV$ (similar to CMS Front electronic threshold)
 - Streamer: $Q_{induced}$ > 40 pC (to be divided for ~2 because of double pad readout)
- HV corrected at P_0 =990 mbar, T_0 = 20 degrees
- Time resolution is extracted from the difference between time over threshold (0.8 mV) of trigger RPC and test RPC
- CMS standard gas mixture:
 R134a (95.2 %) i-C₄H₁₀ (4.5 %) SF₆ (0.3%)

Replacing R134a with HFOze

streamer probability (%)

LNF Test station

HV normalized to P=990 mbar and T= 20 oc

About 900 Volt shift For each 10% of HFO vs R134a

Replacing R134a with HFOze

Pad Induced charge to be divided by ~2 (double pad readout)

LNF Test station

Summary:

HFO shows interesting quenching properties BUT cannot be used alone to replace R134a (large shifts of working voltage)

CO₂/HFO based gas mxitures

Streamer probability (%)

HV normalized to P=990 mbar and T= 20 oc

CO2/HFO based gas mxitures

time resolution (ns)

Total Induced charge to be divided by ~2 (double pad readout)

LNF Test station

Charge and time resolution for HFO at 45% not available

He/HFO based gas mixtures

He/HFO based gas mixtures

Total Induced charge to be divided by ~2 (double pad readout)

LNF Test station

Summary: Use of Helium to reduce working voltage shows reasonable results, but not clear if Helium could be used in CMS

CF₃I vs R134a

HV normalized to P=990 mbar and T= 20 oc

CF₃I vs R134a

time resolution (ns)

Total Induced charge to be divided by ~2 (double pad readout)

LNF Test station

Summary:

Large quenching power BUT for the same efficiency average charge and streamer probability seem to be slightly higher

LNF

Test

station

CF₃I-CO₂ based gas mixtures

HV normalized to P=990 mbar and T= 20 oc

CF₃I-CO₂ vs R134a

Total Induced charge to be divided by ~2 (double pad readout)

LNF Test station

Summary: preliminary results. More work needed to explore if CO_2/CF_3I gas mixtures could be used. BUT the CF_3I is very toxic

The RPC ECOGas@GIF++ Collaboration

- In 2019 a proto Collaboration between Atlas-CMS-Alice-EPDT and later LHCb/ Ship has been set up
- Goal of the Collaboration: To study RPC performance with EcoGas mixtures under irradiation at GIF++
- Chambers from Atlas, CMS, EPDT, Alice, LHCb/Ship and with different gas thickness (2 mm, 1.6 mm, 1.4 mm, 1 mm)

AIDA INNOVA WP 7 Task 7.2.2

Study of eco-friendly gas mixtures for Resistive Plate Chamber detectors

- EcoMix2: CO₂ 60%, HFO 35%, C₄H₁₀ 4%, SF₆ 1%
- EcoMix3: CO₂ 69%, HFO 25%, C₄H₁₀ 5%, SF₆ 1%

Test Beam results 2 mm CMS chamber

70 x 100 cm² size 2 mm Gap Resistivity 2-3 10¹⁰ ohm cm CMS electronics

PRELIMINARY

Surrent density [µA/m²]

- Standard Gas: WP 9686.9 V | eff(WP) 95.8 % | max. eff. 96.8 %
- Ecomix-2: WP 10715.3 V | eff(WP) 97.3 % | max. eff. 98.6 %
- Ecomix-3: WP 9979.8 V | eff(WP) 97.2 % | max. eff. 98.5 %

STD gas mixture

Efficiency vs HV (Std, ECO2, ECO3)

Efficiency vs HV (different rate)

Test Beam results 2 mm CMS chamber

PRELIMINARY

Efficiency vs HV (different rate)

Test Beam results 1.4 mm CMS chamber

70 x 100 cm² size **1.4 mm Gap** Resistivity 2-3 10¹⁰ ohm cm Kodel Standalone electronics: Not the official one

PRELIMINARY

ECO2 gas mixture

Efficiency vs HV (different ABS/rates)

Test Beam results 1.4 mm CMS chamber

PRELIMINARY

- Front end electronics not optimized for 1,4 mm gap
- ECO2 mixture show slightly lower efficiency for the same rate

Test Beam results 1.4 mm CMS chamber

PRELIMINARY

- Higher density current for ECO2 vs STD
- Similar cluster size well under control

Test Beam results 1 mm CMS chamber

PRELIMINARY

Conclusions

- Several ecological (or semi-ecological) gas mixtures have been tested at LNF lab
- HFO-1234ze has interesting quenching properties but cannot be used alone to replace the R134a (high working voltage shift)
- CO2/HFO-1234ze gas mixtures seems to give interesting results
- Use of Helium help in reducing working voltage and is a interesting line to be followed
 - Not clear if possible to use in CMS
- CF₃I is a very interesting candidate from theoretical point of view
 - Very expensive
 - Very quenching
 - Toxic
 - CO₂/CF₃I based gas mixture studies are only preliminary
- Tests at GIF++ started in the context of ECOgas@GIF++ Collaboration and AidaInnova program
 - Results from test beams presented for 1, 1.4 and 2 mm gap RPCs
 - Long term aging will follow

Backup

Control region distributions

Efficient signal selection:

- Integrated charge > 0.3 pC
- |Vmax|>0.4 mV

Cuts verified un the control region Noise contamination in efficiency definition lower than 0.5 %

CO2/SF₆ based gas mxitures

Gaps trips and the chamber works in single mode.

HV normalized to P=990 mbar and T= 20 °c

Possible eco-gas repacements

It cames in two allotropic forms

HFO-1234ze

Molecule	CCl ₂ F2	CF ₄	R134a
Ionization energy (eV)	10.24	12.81	12.40
Molecule	R152a	HFO1234ze	HFO1234yf
Ionization energy (eV)	10.78	9.34	9.37

Molecule similar to R134a ($C_2H_2F_4$) BUT HFO-1234ze GWP=6, HFO-1234yf GWP=4 R134a GWP = 1430

HFO-1234yf HMIS code =2 (moderate flammability)

In this talk we concentrate on HFO-1234ze (HFO in the labels will mean HFO-1234ze)

GWP and ODP close to 0

High quenching power

Very expansive! We were able to buy just a small bottle of 0.5 kg for very few preliminary tests

The "ecological" gas issue

The European Community has prohibited the production and use of gas mixtures with Global Warming Power > 150 (GWP(CO_2) = 1)

- √This is valid mainly for industrial (refrigerator plants) applications
- ✓ Scientific laboratories would be excluded
- ✓ CERN could require to stick to these rules anyhow
- >C₂H₂F₄ is the main component of the present RPC gas mixture:

$$\checkmark$$
GWP(C₂H₂F₄) = 1430, GWP(SF₆) = 23900, GWP(iC₂H₁₀) = 3.3

- \sim C₂H₂F₄ and SF₆ Crucial to ensure a stable working point in avalanche
- ightharpoonupTo_test molecules similar to $C_2H_2F_4$ but with lower GWP

 $C_3H_2F_4$ - tetrafluoropropene (GWP=4-6)

✓ Should replace C₂H₂F₄ as automotive air-conditioning refrigerant

✓other possibility could be CF₃I - Trifluoroiodomethane with GWP ~ 0 & ODP ~ 0

LNF

Test

station

He/HFO based gas mixtures

efficiency Streamer probability

HV normalized to P=990 mbar and T= 20 °c

He/HFO based gas mixtures

Total Induced charge to be divided by ~2 (double pad readout)

LNF Test station