

Simulation Study of Resistive Plate Chambers with C₃H₂F₄-based Gas Mixtures

Antonio Bianchi SY/RF/SRF

21st November 2022

Outline

- Thanks to an iterative procedure based on unfolding electron swarm parameters of C₃H₂F₄, a set of electron collision cross sections is now available
 - methodology
 - results
- REFF simulation
 - results
 - limitations
 - future developments (also for multigap RPCs)

animation

"Striving to be the first climate-neutral continent" – European Green Deal

In Resistive Plate Chambers:

gas mixtures for RPCs, currently under test

The hydrofluoroolefine C₃H₂F₄ has been subject to a growing interest for gaseous particle detectors and gaseous voltage insulating applications thanks to its Global Warming Potential that is lower than 1

First studies:

- "Eco-friendly gas mixtures for RPCs based on Tetrafluoropropene" and Helium", Abbrescia M. et al (2016)
- "Characterization of RPC operation with new environmental friendly mixtures for LHC application and beyond", Guida R. et al (2016)

...nowadays, a number of R&D studies are still on-going

Motivation: a complete set of scattering cross sections for electrons in C₃H₂F₄ that allows reliable predictions of electron transport coefficients and reaction rates in order to optimize the C₃H₂F₄-based

Boltzmann Transport Equation

 $f(\mathbf{r}, \mathbf{v}, t) =$ electron distribution function \mathbf{v} = vector of electron velocity $a = vector of electron acceleration \longrightarrow if H = 0, a = -eE/m_e$ C[f] = collision operators (all relevant information for electron-gas interactions)

If the electron motion is assumed nearly isotropic, f can be expanded in terms of Legendre polynomials of $cos(\theta)$ and truncated after the second term (TTA approximation):

 $f(z, v, t, \theta) = f_0(z, v, t) + f_1(z, v, t) \cos(\theta)$

$$f + \vec{a} \cdot \nabla_v f = C[f]$$

electron swarm parameters

such as:

- electron drift velocity
- longitudinal and transverse diffusion coefficients
- effective ionization rate coefficient

Boltzmann Transport Equation

Boltzmann Transport Equation

For most of the gases, the electron swarm parameters can be easily measured while the measurement of their electron collision cross sections is extremely more challenging Unfolding the electron swarm parameters of C₃H₂F₄ is needed to obtain its electron collision cross sections

Electron Swarm Parameters of C₃H₂F₄

Antonio Bianchi

CERN)

Unfolding of Electron Swarm Parameters

The discrepancies between the electron swarm parameters, calculated by a trial set of cross sections, and the experimental data are progressively minimized

Unfolding of Electron Swarm Parameters

ERN

CERN)

Density normalized longitudinal diffusion coefficient

Pure C₃H₂F₄

Pure C₃H₂F₄

C₃H₂F₄-based Gas Mixtures with CO₂

C₃H₂F₄-based Gas Mixtures with CO₂

CERN

C₃H₂F₄-based Gas Mixtures with Ar

Significant differences between calculations and measurements

Penning effect between excited states of Ar and neutral molecules of C₃H₂F₄

The REFF simulation is a simplified method to evaluate the efficiency curve of RPCs as a function of the high voltage (HV) with different gas mixtures

REFF Simulation

electron collision cross sections

animation

representation

steady-state

virtual planes

Antonio Bianchi

Number of electrons as a function of distance

REFF Simulation

CERN

REFF Simulation Results

 $C_3H_2F_4/CO_2$

Mixture $C_{3}H_{2}F_{4}/CO_{2}$ (45.0/55.0): • experimental data \Box REFF simulation Mixture $C_{3}H_{2}F_{4}/CO_{2}$ (50.0/50.0): • experimental data \Box REFF simulation Mixture $C_{3}H_{2}F_{4}/CO_{2}$ (55.0/45.0): • experimental data \Box REFF simulation

40

REFF Simulation Results

CERN

REFF Simulation Results

The discrimination threshold is of ~300 fC while it was ~130 fC in the previous cases

Limitation of REFF Simulation

Limitations of REFF simulation have been found in presence of SF₆. Potential future improvements: • other different sets of cross sections of SF₆ should be tested (at the moment, only MAGBOLTZ database is used for SF₆) space-charge effects are not still implemented in the simulation

CERN

Space Charge Effects in REFF Simulation

animation

10⁸ 10⁷ 10⁶ 10⁵ 10⁴ 10³ 10²

qualitative representation

Antonio Bianchi

Space Charge Effects in REFF Simulation

CERN

Space Charge Effects in REFF Simulation

At the moment, only multi-gap RPCs have been simulated

ERN

Conclusions and Perspectives

- Growing interest in C₃H₂F₄ for gaseous detectors and voltage insulating applications
 - thanks to a well-known iterative procedure, a set of electron collision cross sections for C₃H₂F₄ is obtained by unfolding electron swarm parameters
 - the dependence of **three-body attachment** rate with the gas density is implemented while further work needs to be done for the **Penning effect** in presence of Ar
 - the set is fully validated in pure C₃H₂F₄ and C₃H₂F₄/CO₂ gas mixtures

REFF simulation

- reliable predictions of the RPC efficiency in C₃H₂F₄-based gas mixtures with the addition of *i*-C₄H₁₀, CO₂, O₂, N₂, He and low concentrations of Ar
- some limitations have been found in C₃H₂F₄-based gas mixtures with SF₆ \bullet
- efforts are put in place to include the **space charge effects** in the REFF simulation \bullet

• Perspectives

- novel strategy to optimize C₃H₂F₄-based gas mixtures for Resistive Plate **Chambers**
- novel strategy to investigate the positive synergy of C₃H₂F₄ with buffer gases for voltage insulating applications

