Environmentally friendly gas mixtures for Resistive Plate Chambers

Gianluca Rigoletti, R. Guida, B. Mandelli

21/11/2022

EP-DT
Detector Technologies

66th ELOISATRON WORKSHOP

Outline

- RPCs at LHC
 - R-134a and SF6 usage
 - Key aspect for finding new environmentally friendly gas mixtures
- Performance with RPCs operated with eco-friendly gas mixtures
 - o R-1234ze as a R-134a alternative for the long term
 - CO2 addition to standard gas mixture for the short-mid term
 - SF6 alternatives
- Performance with RPCs operated with eco-friendly gas mixtures
 - HF production studies
 - Environmental chemistry studies
- Conclusions

GHG consumption of RPCs at LHC

HPL RPCs at LHC are operated with 90-95% of $\underline{R-134a}$ + 0.3% SF6 \Rightarrow **95% GWP** contribution due to **R-134a**, **5%** due to **SF6**

Glass RPCs at LHC operated with 93/7 R-134a/SF6 → **37% GWP** contribution to **R-134a**, **63%** due to **SF6**

LHC 2022-2023 consumption estimates

Gas	Consumption	Yearly consumption	CO2e consumpt ions	Relative GHG contributi on
R-134a	1550 ln/h	61.8 t	88.3 kTon	89%
SF6	8.3 ln/h	474 kg	10.8 kTon	11%

Key aspects in GHG reduction

- Environmental → high GHG consumption due to leaks
- **Economical** → increasing costs of high-GWP gases
- Availability → decreasing on the market due to EU phase out

Goal

Replace or reduce R-134a without changing the current RPC infrastructure (no change in FEB, HV, Gas system)

Gianluca Rigol

Key aspects for the search of new gas mixtures for LHC

RPC short term performance

- Working point limit for HV system
- Sufficient rate capability for HL-LHC

RPC long term performance

- Sustained rate capability with reasonably contained currents

Human safety

- Flammability limits
- Toxicity limits

Environmental properties

- Chemical stability
- Side effects on environment

Engineering for gas systems

- Components validation in case of new gases
- Purifying system
- Compatibility with recuperation plant

R-1234ze degradation products in atmosphere

R-1234ze flammability with i-C4H10

test no.	Iso-butane fraction in test gas mixture in mol%	fraction of test gas mixture of iso-butane and HF01234ze in mol%	fraction of air including 2.25 mol% water in mol%	reaction
9	6.2	15.0	85.0	+
10	6.0	20.0	80.0	
11	4.2	13.0	87.0	+
12	3.1	10.0	90.0	+
13	2.2	13.0	87.0	, +
14	1.1	13.0	87.0	
15	1.0	10.0	90.0	+
16	0.0	12.0	88.0	(2)
17	0.0	11.0	89.0	-
18	0.0	10.0	90.0	-
19	0.0	9.0	91.0	100

Presence of Chlorine in CMS-RPC

Research lines in eco-friendly gas mixtures for RPCs at LHC

Experimental setup: detectors

Laboratory setup

- Single gap, 2 mm electrodes + 2 mm 80x100 cm² gap HPL
- Tests of new gases
- Gas mixtures fine tuning: up to 6 components, 0.01% precision
- Low rates, cosmic muons → short term performance
- Raw waveform analysis: efficiency, st. prob., cluster size, time resolution, prompt charge

GIF++ setup

- Muon beam + ¹³⁷Cs gamma source
- Gas mixtures validation:
 - Muon beam at different background rates (ABS filters) → short term performance
 - Currents, resistivity stability under irradiation → long term performance

Data acquisition and analysis

Data acquisition

- Raw waveform digitizing: efficiency, charge, shape, time analysis of signals
- 7 strips readout / RPC
- 2-3 RPC for **result consistency**
- HV scans: ~ 10 HV points, 10⁴ waveforms for each
 HV point → O(10⁵-10⁶) waveforms analyzed per run

Data analysis

- Efficiency fitting with sigmoid function
- Working point definition: **HV(95% of \varepsilon_{max}) + 150 V**
- Avalanche / Streamer threshold: 10⁸
 electrons ~ 16 pC
- Efficiency-streamer separation: $\Delta V_{w,p} \Delta V_{10\% \text{ st.prob.}}$, streamer variability: (w.p. ± 50V)
- **GIF++ tests**: foremost parameters evaluated at working point **for each ABS filter**
 - Tested up to 500-600 Hz/cm²

Charge [pC]

100

10250

Voltage [V]

10000

Alternatives to R-134a

Alternative to R-134a: R-1234ze

R-1234ze identified as possible replacement to R-134a

- Extremely low GWP (~ 7)
- Increasingly wider adoption in refrigerant industry
- However, market price and availability not yet comparable to R-134a → *Honeywell patented*
- **Cannot replace 1:1 R-134a** \rightarrow w.p. too high \rightarrow CO2/He required to lower w.p.
- **Long term effects** still under investigation

R-1234ze performance with CO2 (+ R-134a) with cosmic muons

- **45% HFO + CO2 (ECO1)** ⇒ w.p. too high (~11.6 kV)
- 25% HFO + CO2 (ECO3) ⇒ low GWP, high charge content → higher currents. Currently being tested by RPC ECOGAS collaboration
- **22% HFO + 22% R-134a + CO2** ⇒ higher GWP, lower charge content than HFO only. Possible compromise between performance and environment

Waveforms of Std vs. HFO vs. HFO + R134a gas mixtures

ECOGAS Collaboration: test beam results

Two HFO/CO2 gas mixtures identified Irradiation campaign ongoing

- higher HFO → lower currents but higher w.p.
- higher CO2 → lower w.p., higher currents, lower max. eff.
- ECO2 selected for long term tests

Joint collaboration between CERN Gas group, ALICE, ATLAS, CMS, LHCb-SHiP

STD = 95.2% R134a + 4.5% ISO + 0.3% SF6

ECO2 = 35% HFO + 60% CO2 + 4% ISO + 1% SF6

ECO3 = 25% HFO + 69% CO2 + 5% ISO + 1% SF6

 ▲
 Source Off | wp 9825 V | I 26.0 ± 0.3 uA | 7 ± 1 Hz/cm2

 ▲
 ABS 6.9 | wp 10324 V | I 290.3 ± 0.6 uA | 4730 uSv/h | 514 ± 11 Hz/cm2

 ▲
 ABS 22 | wp 10114 V | I 148.3 ± 0.3 uA | 1630 uSv/h | 202 ± 7 Hz/cm2

Source Off | wp 10299 V | 174.7 ± 2.2 uA | 7 ± 1 Hz/cm2
 ABS 6.9 | wp 10927 V | 1495.3 ± 1.0 uA | 4730 uSv/h | 536 ± 11 Hz/cm2
 ABS 22 | wp 10592 V | 1267.8 ± 1.2 uA | 1630 uSv/h | 238 ± 7 Hz/cm2

Source Off | wp 11065 V | 149.1 ± 1.0 uA | 0 ± 0 Hz/cm2
 ABS 6.9 | wp 11589 V | 1452.1 ± 0.2 uA | 4730 uSv/h | 482 ± 11 Hz/cm2
 ABS 22 | wp 11339 V | 1237.9 ± 0.6 uA | 1630 uSv/h | 221 ± 7 Hz/cm2

R-134a + R-1234ze + CO2/He gas mixtures @ GIF++

R-134a + R-1234ze: two gas mixtures at high rates (1 CO2 50%, 1 He 30%):

He gas mixture has lower working point than CO2 one

CO2 + R-1234ze gas mixtures have slightly higher **efficiency drop** (-2 %)

He gas mixture has slightly lower currents than **CO2** equivalent (+30% He, +50% CO2)

Short-Mid term: R-134a reduction by addition of alternative gases

Reduction of R-134a in the standard gas mixture by addition of a 4th, non-fluorinated gas

O2: good performance but highly reactive → lower **flammability limit**, higher currents due to oxidation reactions

Ne: good performance but **no availability** on the market

CO2: good performance → **selected as main candidate** for GIF++ tests

N2: high streamer contamination at low concentrations

He: good performance but **problematic for PMTs in LHC** caverns

N20: discrete performance but increased working point of ~ 300 V

Ar: slightly high streamer probability

Gas mixture | w.p.

Standard: 9540 V

Std. + 10% O2: -170 V

Std. + 10% N2: - 40 V

Std. + 10% He: -640 V

Std. + 10% Ne: -640 V

Std. + 10% N2O: +360 V

Std. + 10% CO2: -190 V

Std. + 10% Ar: -410 V

CO2 usage to mitigate R-134a consumption

Studies on CO2 impact when added to the standard gas mixture: 30%, 40%, 50%

- Tests performed with muon beam and gamma background
- w.p. decreases of ~ 190 V / 10% CO2
- **GWP** reduction of **30-50**%
- Current increase of +10-15% @ 500
 Hz/cm2
- **Streamer** fraction **increases**
- Two avalanche populations when using CO2 and R-134a → under investigation

CO2 usage to mitigate R-134a consumption

Addition of 30%, 40%, 50% of CO2 gas mixture as mid-term solution to mitigate R-134a. Muon beam studies

- 1. Average prompt charge slightly increasing (+10-15%)
- 2. Cluster size increases with CO2 amount
- 3. Average signal times over threshold increase with CO2
- 4. Time resolution of CO2 gas mixtures is lower than std. one

Adjustment of SF6 needed to further suppress streamers

SF6 adjustment in CO2 + R-134a gas mixtures

Combination (30%, 40%, 50%) **CO2** x (0.3%, 0.6%, 0.9%) **SF6**

- Higher efficiency-streamer separation for 30%/40% CO2 + 0.9% SF6 or 30% CO2 + 0.6% SF6
 → possible candidates
- Lower variation of streamer probability for the same gas mixtures

Selected CO2-based gas mixtures

Selected CO2/SF6 gas mixture for long term tests:

64% R-134a + 30% CO2 + 5% i-C4H10 + 1% SF6

- **30% CO2** → conservative approach
- **1% SF6** chosen to lower charge content
- 5% i-C4H10 chosen to be compatible with ATLAS
 RPC requirements
- Currents ~15% higher → under investigation

Prompt charge distribution - muon beam stund 1.75 -standard -std. + 30% CO2 0.75 0.50 0.25 0.00 10-1 100 101 102 103

Charge [pC]

Alternatives to SF6

Alternatives to SF6: possible candidates

SF6 is used in power plants as an electrical insulator. Energy industry engineered some alternatives:

- Ketones: **C4F8O**, **Novec[™] 5110**, other Novecs
- NovecTM 4710
- Chlorinated HFOs: **HFO-1224yd**, HFO-1233zd, HFO-1336mz
- CF31

Key factors in the search of SF6 alternatives:

- Human safety → toxicity
- Low GWP and ~0 ODP
- Vapour pressure → sufficient gas phase
- Presence of new elements in the molecules → Cl,
 I, Br

Alternatives to SF6

SF6 in the standard gas mixture **replaced** with its alternative:

C4F8O → Discrete performance at 1.5%, **high GWP** (~8000)

CF3I → Good performance at 0.3% but **mutagenic toxicity**

Novec 5110 → Discrete performance at 2% but almost **liquid**

Novec 4710 → **Excellent** performance at 0.1% but it may react with **water** (under investigation) → selected for beam studies

Amolea 1224yd → **Good performance** at 0.3% → selected for beam studies

SF6 alternatives at GIF++

Two selected gases tested with muon beam and gamma background: **Novec 4710, Amolea 1224yd**

Novec 4710 **0.1%**, **0.3%**:

- 1. Working point similar to std. when used at **0.1%**
- Currents slightly lower for 0.1% → possibly due to lower charge per count at higher concentrations

Amolea 1224yd **0.3%**, **0.5%**:

- 3. Working point similar to std. gas mixture at **0.3%**
- 4. Currents at **0.3**% and **0.5**% similar to std. gas mixture

Gianluca Rigoletti

Impurities studies: setup and methodology development

R-134a and **R-1234ze** break under electric field and gamma irradiation → **HF** production → detector inner surface possible damage

Studies on HF production

- Gas analyzed at the output of the detector irradiated and operated at working point with different gas mixtures
- Ion Selective Electrode technique employed: gas is sampled into a F- capturing solution, the concentration of HF is measured

Setup and methodology development

- Partial gas sampling or full gas sampling → Both have pros and cons
- Optimization of the existing methods: increase the accuracy of measurement by improving parameter monitoring and measurements procedure
- **Tests** on **hardware** components for optimal measurements: long lasting electrodes, mass flow meters, stirrers, etc.

Impurities studies

Impurities studies: HF production of different gas mixtures

Standard vs R-1234ze based gas mixture

- Comparison between standard and R-1234ze/R-134a + CO2 gas mixture
- Detector operated at **w.p.** and **different** background **rates**
- **R-1234ze** gas mixture produced around 4 times more HF than std. gas mixture

- Std.
- Std + 30% CO2
- Std + 30% CO2, 1% SF6
- R-1234ze + R134a + 50% CO2
- R-1234ze + R134a + 30% He

G. Rigoletti et al 2020 JINST 15 C11003 **HF Production @ w.p.**

R-1234ze, CO2, R-134a contributions to HF production

- R-1234ze gas mixtures and Std. + CO2 gas mixtures
- **R-1234ze** gas mixtures have the **highest HF production** → R-1234ze higher chemical reactivity
- **HF production** is **not proportional** to amount of **F-gases** in the mixture:
 - **30% CO2** + R-134a produces the **same amount** of HF as the **std.** gas mixture
- Ongoing studies to understand **correlation** between **HF** and gases in the mixture

UV absorption and water solubility studies

UV absorption of Novec 5110 and Novec4710

- Measurements done together with CERN Chemistry group
- Novec 5110 shows a significant UV absorption in the UVB-UVA region (300-400 nm)
- Novec 4710 doesn't show any significant absorption in UV region
- Further studies needed at lower wavelengths

UV-spectroscopy (CERN chemistry lab)

Thanks to B. Teissandier for helping in the measurements and providing the instrument

UV absorption of Novec 5110 and Novec4710

- Novec 4710 low GWP is due to its water solubility
- Bakelite RPC uses 40% RH humidity
- Novec 4710 + H2O → amide formation
 - ppb concentration
 - Solid at room temperature
 - Significant vapour pressure at 60 °C
- Ongoing tests in laboratory
 - Qualification of sub products formation
 - Quantification of amide formation at the temperatures used in RPC systems

Novec 4710 + humidified CO2 setup

Conclusions

Alternatives gas mixtures for RPCs at LHC

- R-1234ze studied in RPCs with different gas mixtures, muon beam and gamma background
- Performance are not matching the ones of the std.
 gas mixture → compromise between
 environment/safety/performance might be required
- R-1234ze effects still needs to be better addressed on the long term due to higher currents and HF production
- Environmental subproducts of R-1234ze to be better understood

Non fluorinated alternatives

- Several gas tested: N2, N2O, O2, Ne, He, CO2, Ar
- They cannot replace R-134a but **mitigate** its **consumption**
- CO2 selected: availability, price, good performance, known effects on other detectors
- 64% R-134a + 30% CO2 + 5% iso + 1% SF6 selected for LHC

Alternatives to SF6

- Lots of candidates that can be used as SF6 alternatives
- Most of low-GWP candidates are highly reactive in atmosphere → RPCs performance might be affected
- Tests ongoing to carefully evaluate the environmental chemistry of new gases
 - UV absorption
 - Reactivity with humidity
- Novec 4710 and Amolea 1224yd showed good performances with muon beam and gamma background
- Amolea 1224 contains Cl atom: may severely affect gas systems and detector operation
- Novec 4710 not mean to be used in wet environments
 → dedicated setup to quantify the production

Thank you

GWP calculation

GWP for a single gas is well defined: it is a measure of how much energy the emissions of **1 ton** of a gas will absorb over a given period of time, relative to the emissions of 1 ton of carbon dioxide (CO2)

Gas mixture is expressed in fractions of normal volume \rightarrow proportional to number of moles \rightarrow molecular weight GWP of gas mixture: $(\Sigma GWP_i * M_i * f_i) / M_{CO2}$, where M is molecular mass and f the amount of the gas in the mixture

Example:

Suppose RPCs are operated with 1000 ln/h of CO2. After one year the tons of CO2 are:

1000 ln/h * 8760 h / 22.4 l/mol * 44 g/mol = **17.2 tons**

Suppose RPCs are operated with 70% R-134a and 30% CO2. If we simply do the proportion we would get: 1430 * 0.7 + 1* 0.3 = 1001 of GWP $\rightarrow wrong\ estimation$

After one year the equivalent tCO2e are:

- **CO2**: 300 ln/h * 8760 h / 22.4 l/mol * 44 g/mol = 5.2 tons \Rightarrow 39.9 ktCC
 - \Rightarrow 39.9 ktCO2e \Rightarrow GWP_e = 39.9 ktons
- **R-134a**: 300 ln/h * 8760 h / 22.4 l/mol * 102 g/mol * 1430 = **39.9 kTons** / 17.2 tons = **2320 GWP**_e

This results are because detectors and gas systems are operated using **normal volume units** and not mass of the gases

Gamma charge per count

Std vs Std + 30% CO2 selected gas mixture: source off

Std vs Std + 30% CO2 selected gas mixture: source off

Gas coefficients from simulation

HFO flammability tests

Safety concerning HFO usage

 R-1234yf classified as mildly flammable → Focus on R-1234ze

R-1234ze + i-C4H10 + 40% RH flammability test conducted:

ISO 1056 standard flammability test (detachement + flame propagation criteria) performed by external company

Results

- Mixture with **1% i-C4H10** + R-1234ze **is flammable**
- Water vapour plays an important role

HFOs alone + i-C4H10 is flammable → Effects of the CO2 on the mixtures to be understood/checked

illustration of a flame detachment with flame propagation over a distance of at least 100 mm as criterion for flammability

test no.	Iso-butane fraction in test gas mixture in mol%	fraction of test gas mixture of iso-butane and HF01234ze in mol%	fraction of air including 2.25 mol% water in mol%	reaction
9	6.2	15.0	85.0	+
10	6.0	20.0	. 80.0	(#2)
11	4.2	13.0	87.0	+
12	3.1	10.0	90.0	+
13	2.2	13.0	87.0	y +
14	1.1	13.0	87.0	
15	1.0	10.0	90.0	+
16	0.0	12.0	88.0	*
17	0.0	11.0	89.0	* .
18	0.0	10.0	90.0	
19	0.0	9.0	91.0	-

https://edms.cern.ch/document/2463340/1

