The Boulby mine: An opportunity for Nuclear Astrophysics

Marialuisa Aliotta

School of Physics and Astronomy - University of Edinburgh Scottish Universities Physics Alliance

LUNA MV Roundtable - Gran Sasso, 10-11 February 2011

challanges

Thermonuclear Reactions in Stars

low cross sections \rightarrow low yields \rightarrow poor signal-to-noise ratio

Yield = N_{projectiles} × N_{target} × cross section × detection efficiency

maximising the yield requires:

improving "signal" (e.g. high beam currents, high target density, high efficiency)

- reducing "noise" (i.e. background)
- combination of both

the underground solution

Main Sources of Background:

- > natural radioactivity (mainly from U and Th chains and from Rn)
- cosmic rays (muons, ^{1,3}H, ⁷Be, ¹⁴C, ...)
- > neutrons from (α ,n) reactions and fission

ideal location: underground + low concentration of U and Th

measurements of key reactions at <u>astrophysical energies</u>

only <u>4 reactions</u>: ${}^{3}\text{He}({}^{3}\text{He},2p){}^{4}\text{He} d(p,\gamma){}^{3}\text{He} {}^{14}\text{N}(p,\gamma){}^{15}\text{O} {}^{3}\text{He}({}^{4}\text{He},\gamma){}^{7}\text{Be}$ rates measured <u>directly</u> (@ LUNA underground facility in Gran Sasso)

all other reactions:

rates entirely based on extrapolations

large uncertainties in astrophysical models and predictions

LUNA Limitations

many critical reactions for astrophysics **BEYOND** current capabilities

!! new underground facilities are very much needed !!

Late stages of stellar evolution

importance: astrophysical energy: minimum measured E: evolution of massive stars 1 - 3 MeV 2.1 MeV (by γ-ray spectroscopy)

5

E_{cm} [MeV]

6

7

8

2

can we improve on current situation?

Gran Sasso, 2011

3

the project

European Laboratory for Experimental Nuclear Astrophysics

Boulby: commercial potash and salt mine (Cleveland Potash Ltd) deepest mine in Britain (~ 1100 m deep)

The Mine:

over 40km of tunnel dug each year in potash and rock salt layer

(now > 1000km in total)

Underground facility (Dark Matter):

1000m² lab space, workshops, cranes, power, communications, air conditioning & filtration

M. Aliotta

Gran Sasso, 2011

Proximity of services

why is Boulby *ideal* for Nuclear Astrophysics?

deep mine 1	100 m (2800 m.w.e.)
-------------	---------------------

salt environment

low in U/Th

no space constraints

easy access for equipment

mine management support

- → ~10⁶ reduction in CR
 + uniform shielding
- \rightarrow lower n- and γ -background
- \rightarrow no *interference* issues
- \rightarrow vertical shafts
 - + underground transport
- \rightarrow infrastructure & services

 γ -ray background comparison

the facility

the accelerator

Ion (charge state)	Particles per second	
H⁺	5.0×10 ¹⁴	
He⁺	5.0×10 ¹³	
He ²⁺	1.0×10 ¹³	
Xe ¹⁷⁺	2.9×10 ¹²	
Kr ¹⁵⁺	4.1×10 ¹¹	
Ar ¹¹⁺	5.6×10 ¹¹	
Ne ⁶⁺	1.0×10 ¹²	
Fe ¹¹⁺	5.7×10 ¹¹ (estimated)	
Ni ¹¹⁺	5.7x10 ¹¹ (estimated)	

- > 3 MV single-ended machine (e.g. NEC, Pelletron)
- > ECR source (e.g. for high intensity (~500 μ A) ¹²C beam at high charge states)
- > Beam-lines + detection systems (gamma, neutron, charged particles)

studies possible both in <u>direct</u> and <u>inverse</u> kinematics

estimated cost for accelerator + ECR source: ~2.5 M€ = 1.7 M£

The ELENA Project

Stage I: Feasibility Study & Design

(duration: 24 months, cost: £410k)

- > <u>neutron</u> & γ -ray background measurements at Boulby
- infrastructure design (by engineering company)
- <u>accelerator</u> and <u>beam tests</u>

Overview

Stage II: Construction, Commissioning, Exploitation (duration: ~24 months (C,C) + 60 months (E); $cost: ~ \pm 6M$)

- <u>construction</u> of laboratory infrastructure
- <u>commissioning</u> of accelerator + ion source facility
- initial <u>scientific exploitation</u> (5 years)

ELENA - Stage I Feasibility Study and Design

proposal submitted to STFC but not funded at present ELENA-I Workpackages

WP1: Background measurements
WP2: Accelerator & ion source tests
WP3: Scientific equipment & requirements
WP4: Laboratory design
WP5: Health & Safety

Overall Objectives

> identification of <u>site</u> for infrastructure

- > accelerator specifications
- experimental <u>requirements</u>
- <u>laboratory design</u> and specifications
- total <u>cost</u> and <u>timescale</u> estimates

International Workshop to establish financial/scientific contributions to "ELENA - Stage II" from (inter)national NA community

The Science

hot topics in Astrophysics

key open questions

fate of massive stars (<u>supernovae</u> explosions)?
<u>carbon burning</u> [¹²C+¹²C] in advanced stages of stellar evolution

> where and how are <u>heavy elements</u> produced? <u>neutron sources</u> [$^{13}C(\alpha,n)^{16}O$ and $^{22}Ne(\alpha,n)^{26}Mg$] for s-process

> AGB stars nucleosynthesis, Novae ejecta, Galaxy composition? Ne, Na, Mg and Al nucleosynthesis [(p,γ) and (p,α) reactions]

Late stages of stellar evolution

importance: astrophysical energy: minimum measured E: evolution of massive stars 1 - 3 MeV 2.1 MeV (by γ-ray spectroscopy)

options for improvements of surface measurements: exhausted

underground measurements required

what improvements at Boulby?

> exploit lower γ -ray background $\rightarrow \gamma$ -ray measurements

$$\begin{array}{ll} ^{12}C + ^{12}C \rightarrow p + ^{23}Na^* \rightarrow ^{23}Na + \gamma & \qquad & E_{\gamma} = 440 \text{ keV} \\ \alpha + ^{20}Ne^* \rightarrow ^{20}Ne + \gamma & \qquad & E_{\gamma} = 1.63 \text{ MeV} \end{array}$$

- expected background at least 100x lower than on surface
- Iowest energy achievable E_{cm}~1.5 MeV
- greatly improved precision (~ 10-15%, i.e. 10x better than present)

astrophysical impact

- constrain/discriminate between extrapolations
- determine ignition temperature for ¹²C+¹²C fusion
- > show if lower-mass stars end up as supernovae
- > solve current discrepancy on mass estimates of SN progenitors

Neutron sources for heavy elements

¹³*C*(α, n)¹⁶*O*

importance: astrophysical energies: minimum measured E: neutron source for *s-process* in AGB stars

130 - 250 keV 270 keV

(s-process = *slow* neutron-capture for heavy elements nucleosynthesis)

current status

improvements at Boulby

- neutron detection
- expected n-background ~ 50x lower
- Iowest energy achievable E_{cm}~200 keV
- > greatly improved precision (~15%)

astrophysical impact

- neutron density for s-process
- > nucleosynthesis paths & abundances

options for improvements of surface measurements: exhausted underground measurements required

Neutron sources for heavy elements

importance: astrophysical energies: minimum measured E: s-process in AGB stars 400 - 700 keV ~550 keV

underground measurements required

Other examples

abundances of Ne, Na, Mg, Al, ... in AGB stars and nova ejecta affected by many (p,γ) and (p,α) reactions

shaded areas indicate order of magnitude(s) uncertainties

Iliadis et al. ApJ S134 (2001) 151; S142 (2002) 105; Izzard et al A&A (2007)

!! underground measurements are necessary !!

opportunities for international nuclear astrophysics community scientific involvement in nuclear astrophysics studies

ion source

ECR, RF, duoplasmatron, sputtering high intensity (several 100s μ A) beams (p, d, ^{3,4}He, C, N, O, Mg, Al, ... isotopes)

<u>accelerator</u>

high long-term stability small energy spread (~10 eV) acceleration voltage accuracy ~ 10⁻⁴

<u>targets development</u>

windowless (re-circulated) gas target systems high purity solid state targets

<u>detector development</u>

gamma-ray arrays (Compton suppressed) low-background neutron detectors silicon detectors for low-energy "heavy ion" detection

<u>theoretical approaches</u> for low-energy nuclear reactions R-matrix, direct capture, nuclear structure

ELENA in the International Context

Underground Labs for Nuclear Astrophysics

At present, LUNA at Gran Sasso (Italy) ONLY underground laboratory in the WORLD

LUNA (Italy)

Main Limitations

- beam species (only protons, alphas, no heavy ions)
- neutron production NOT allowed
- > space constraints for upgrade

CANFRANC (Spain)

workshop to explore opportunities for NA 19-20 February 2009

postdoctoral position recently opened

DUSEL

(Deep Underground Science & Engineering Laboratory)

site selected (10 July 2007): gold mine at <u>Homestake</u> NSF <u>approved funding</u> for feasibility study New underground facilities clearly needed and fully endorsed by international Nuclear Astrophysics Community

Boulby salt mine

- > no space constraints
- > no interference with other scientific programmes
- > well-established safety and support infrastructures
- Iower background (lower U & Th content) w.r.t. other sedimentary rocks

world-class opportunity

<u>unique facility worldwide</u>

- well <u>beyond</u> current capabilities
- unique leadership opportunity for European science

science output

- fundamental impact in our understanding
- key questions (energy generation, nucleosynthesis)

UK community

- exploitation of strength and expertise
- potential for major international involvement

high quality research environment

- excellent training opportunities for PhD students
- links with industry involvement and spin-out technologies at cutting edge

Stage I: Feasibility Study and Design

PI:	<u>Marialuisa Aliotta</u> *	University of Edinburgh	UK
Co-I:	Sean Paling ^{\$}	University of Sheffield	UK
	Frank Strieder* ^{\$}	Ruhr-Universität Bochum	Germany
	Lucio Gialanella*	INFN, Naples	Italy
	Cristina Bordeanu*	HH-NIPNE	Romania
	BPG ^{\$}	Rutherford Appleton Lab	UK
	David Pybus	Cleveland Potash Ltd, Boulby	UK
	PDRA* ^{\$}	University of Edinburgh	UK

(*) expertise in Nuclear Astrophysics(\$) expertise in Underground Science

+ strong support from RAL & CPL