An underground nuclear astrophysics laboratory at LS Canfranc

L.M. Fraile Universidad Complutense de Madrid

for the Canfranc Underground Nuclear Astrophysics collaboration

- ✓ Under the Pyrenees, (unused) railway tunnel
 - \rightarrow Canfranc, close to Jaca (Huesca)
 - \rightarrow Created in the 1980s by A. Morales, Univ. Zaragoza
- ✓ New lab built when the parallel road tunnel excavated
 - \rightarrow Structures completed 2005
 - \rightarrow Construction faults solved end 2009
 - \rightarrow Horizontal access (road tunnel, safety tunnel)
- ✓ Managed by a consortium
 - → Spanish Ministry for Science and Innovation, the Regional Government of Aragon and the University of Saragossa.
 - 850 m of rock ~2400 mwe
 - $\phi_{\mu} = 3 \times 10^{-3} \, \text{m}^{-2} \text{s}^{-1}$
 - $\phi_n = 2 \times 10^{-2} \,\mathrm{m}^{-2} \mathrm{s}^{-1}$
 - Rn (in air) ~ 50 to 80 Bq/m³

Canfranc

LNGS – Feb 2010

N-330.

Jaca

loas

Guasillo

Banaguas

Abay

Somport Tunnel

LNGS – Feb 2010

Laboratorio Subterráneo de Canfranc

L.M. Fraile

Lab cross section

Map of the LSC

Experimental halls A, B and C

LSC – external building

Headquarters & Administration Safety and Quality Assurance 16 offices for scientific users 7 offices for LSC personnel 4 specialised laboratories Mechanical workshop & storage room Meeting room Library Conference room Exhibitions room 2 apartments Surface: 1.821 m² (2.115 m² built) Project completed: December 2008 Building completed: Autumn 2010 Cost of the building: 2.8 M€

In use since Dec 2010

[from A. Bettini]

Expression of Interest Underground NA @ LSC

L.M. Fraile

LNGS – Feb 2010

NA at Canfranc

✓ Expression of interest to Scientific Committee – 2009

Expression of Interest to the Canfranc Underground Laboratory

CUNA

A NUCLEAR ASTROPHYSICS FACILITY FOR LSC: THE SOURCES OF NEUTRONS IN THE STARS AND OTHER REACTIONS OF ASTROPHYSICAL INTEREST

Participants

F. Calviño, E. Garcia-Berro, B. Gomez, J. Jose Universitat Politecnica de Catalunya, Barcelona

J. Isern, M. Hernanz Institut de Ciencies de l'Espai-CSIC, Bellaterra

> C. Abia, I. Dominguez Universidad de Granada

D. Cano, T. Martinez Centro de Investigaciones Energeticas y Medioambientales, Madrid J. Benlliure, M. Caamaño Universidad de Santiago de Compostela

A. Algora, J. L. Tain Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia

A. Pedro de Jesus, D. Galaviz, J. P. Ribeiro, J. Cruz, L. R. Gasques Centro de Fisica Nuclear da Universidade de Lisboa

> S. Harissopoulos Institute of Nuclear Physics "Demokritos", Atenas

C. Broggini, A. Caciolli, R. Menegazzo, C. Rossi Alvarez INFN, Sezione di Padova

P. Corvisiero Università di Genova ed INFN, Sezione di Genova

> P. Bezzon INFN, Laboratori Nazionali di Legnaro

A. Guglielmetti, C. Mazzocchi Dipartimento di Fisica, Università di Milano ed INFN, Sezione di Milano

> D. Bemmerer, M. Marta Forschungszentrum Dresden-Rossendorf, Dresden

> > Zs. Fülöp, Gy. Gyürky ATOMKI, Debrecen

Other reactions

$^{13}C(\alpha,n)^{16}O$ $^{22}Ne(\alpha,n)^{25}Mg$

L.M. Fraile

LNGS – Feb 2010

The s-process

s-process components

✓ Core He burning (and shell C-burning) in massive stars

- \rightarrow (e.g. 20 solar masses)
- \rightarrow ¹⁴N quickly converted to ²²Ne

At the end of the He burning (T~3E8 K) 22 Ne(α ,n) 25 Mg provides the neutron source

The existing Fe (and other nuclei) are seeds for a (secondary) s-process

L.M. Fraile

LNGS – Feb 2010

Temperature	2.2 - 3.5 E8 K
Density	$1 - 3E3 \text{ g/cm}^3$
Average neutron density	7 E5 cm ⁻³
Peak neutron density	2 E7 cm ⁻³
Neutron exposure $\tau = \int j_n(t) dt$	0.206 / mb

[adopted from H. Schatz, C. Iliadis]

L.M. Fraile

The main s-process

✓ Outcome of many generations of AGB stars populating the interstellar medium before the solar system formed

 \rightarrow Model for thermally pulsing stars (TPs)

AGB stars

The main s-component is not a unique process, depending on the efficiency of the so-called ¹³C pocket, on the initial mass, and on the metallicity.

	$^{13}C(\alpha,n)^{16}O$	22 Ne(α ,n) 25 Mg
Location	Pocket	He flash (short, intense burst)
Importance	Primary source (weaker but longer)	Secondary source (slight change of abundances)
Requirements	Needs ¹³ C	²² Ne is abundant
Regime	Radiative	Convective
Temperature	$0.9 - 1.0 \ge 10^8 \text{ K}$	2.7 x 10 ⁸ K
Neutron density	$7 \text{ x } 10^7 \text{ cm}^{-3}$	$10^{10} \text{ cm}^{-3} \text{ (peak)}$
Duration	20,000 yr	few years
Neutron exposure τ	0.1 / mb (90% exposure)	0.01 / mb

Measuring stellar burning rates

✓ Cross-sections

- \rightarrow parametrized models
- → Typical stellar temperatures (10⁷-10¹⁰
 K) and Coulomb barrier translates into low LAB energies (0.001-1 MeV): Gamow peak
- \rightarrow Low energies resonances may appear
- ✓ Measure at (close to) the relevant energies → Extrapolations

Rate $\propto \langle \sigma \nu \rangle \propto \int \Phi(E) \sigma(E) dE$ $\Phi(E) \propto E e^{-\frac{E}{kT}}$ $\sigma(E) = \frac{1}{E} e^{-2\pi\eta} S(E)$

 $2\pi\eta = 31.29 Z_1 Z_2 (\mu/E)^{0.5}$

- ✓ Very low energies
 - \rightarrow Cross-sections are extremely small (10⁻¹² –10⁻²⁰ barn)
 - \rightarrow Requires high luminosity (beam current)
 - \rightarrow Requires large signal/noise ratio
- ✓ Possibilities at ground level exhausted

L.M. Fraile

Going underground

✓ Background sources

10²

- \rightarrow Cosmic ray muons
- → Muon-induced neutrons & radioactivity
- \rightarrow Rn and A=210 Pb-Bi-Po daughters
- \rightarrow Gamma and n emission from materials
- \rightarrow Rn emanation from materials
- \rightarrow Beam induced reactions

UNDERGROUND → Cosmic rate reduction → Significant below 1000 mwe → Additional background reduction [J.M. Carmona et al., A Phys, 2004]

LNGS – Feb 2010

- ✓ "A Nuclear Astrophysics facility for LSC: The sources of neutrons in stars & other reactions of astrophysical interest"
 - → IFIC-CSIC Valencia, ICE-CSIC Barcelona, U Santiago, CIEMAT, U Granada, UC Madrid, UPC Barcelona, INP Athens, INFN Padova, INFN Genova, INFN Legnaro, INFN Milano, U Lisbon,FZR Dresden, ATOMKI Debrecen

✓ Physics case

- \rightarrow Europe-wide discussion collaboration with LUNA
- \rightarrow Agreement for multisite complementarity (and with ground based labs)
- \rightarrow Neutron sources in stars: ¹³C(α ,n)¹⁶O, ²²Ne(α ,n)²⁵Mg
- \rightarrow Other reactions
 - ${}^{23}Na(p,\gamma)$ and ${}^{23}Na(p,\alpha)$ H burning classical novae
 - ${}^{12}C+{}^{12}C Carbon burning SNII$
 - ${}^{26g}Al(p,\gamma){}^{27}Si MgAl chain AGBs$, Wolf-Rayet
 - ${}^{22}Na(p,\gamma){}^{23}Mg 1275 \text{ keV} \text{Classical novae}$
- \rightarrow Other possible cases discussed and skipped

L.M. Fraile

Eol: Proposal for new hall

Option for the accelerator

3.5 MV HVEE Singletron

Terminal V: 0.2-3.5 MV# Terminal V ripple: 200 Vpp# V stability (at 2250 kV): 150 V

X-ray radiation level (at 1 m from the tank): less than 2 μSv/h

H⁺ beam current (after the magnet): 100 μA

RF ion source (H⁺, D⁺, He⁺)

Other options considered for future upgrades

Contact with CENBG Bordeaux

- → Science case Development of the existing Physics case, the background level requirements, energy regime in inverse kinematics, exploration of complementary measurements at other laboratories.
- → Background and shielding Evaluation of the background with online measurements and support of Monte Carlo simulations, input to the cave design, passive shielding, active shielding, accelerator induced background, limitation of background to other caves.
- → Accelerator and ion sources Requirements and specifications (energy regime, dispersion, stability, beam current, induced background), input to cave design including dimensions.
- → Targets and experimental detection system neutron and gamma detection systems (efficiency, range, granularity, background), target (specifications, purity).

- ✓ Feasibility study on CUNA hall by LSC
 → Definition of general features Nov 2010
 → Call for engineering feasibility study report
 - Three offers expected, one already received.
 - Full engineering study and request to Ministry to follow

CUNA Hall – call 2010

New Hall

- Separated from the rest three optional locations
- Area: 22 m 13 m
- Height 6 8 m
- Crane (arc)
- Accelerator + analyzing magnet + beam lines...
- Two experimental halls
- Services
- Control room
- Instrumentation

Neutron detectors (UPC-Barcelona, CIEMAT-Madrid, IFIC-Valencia)

High efficiency neutron counter

DESPEC/FAIR 4πn

- ³He proportional counters
- PE neutron-moderator matrix
- triggerless DACQ

Neutron Time-of-Flight spectrometer

- BC501A liquid scintillation cells
- n/γ discrimination
- fast sampling digitizers

Background and simulations

✓ Assessment of neutron bckg.

\rightarrow Bonner spheres

- Collaboration with UAB [C. Domingo et al.], UniZar [I. Irastorza et al.], LSC [I. Bandac]
- Meeting Zaragoza Dec 2010
- Feasibility tests February 2011
- \rightarrow ³He counters (+ ...)
 - IFIC, UPC, CIEMAT, UCM
 - Planned for March-April 20112011
- \rightarrow Hall simulations + background
 - Collaboration with UniZar (NEXT project)
 - PDoc to be hired via CUP @ IFIC LNGS - Feb 2010

✓ Dedicated CUNA hall and associated facilities at LSC

 \rightarrow Letter of intent to be submitted by end of 2011

- Experimental requirements, Background assessment, Accelerator specifications, Laboratory design and specs, Cost estimates, time scales
- → Eight Spanish groups involved + International collaborators
- \rightarrow Collaboration with CUP project
- \rightarrow Support from the LSC laboratory
- \rightarrow Feasibility study for the hall underway

Excellent opportunity at Canfranc Complementary to other projects

Strong Physics case

 \rightarrow Based on success by LUNA 400 kV

Continue efforts to establish a EU network on underground NA

- → Develop European programme with several MV complementary sites
- → Dresden meeting April 2010
 - EU community strengthened by networking
 - Open facilities
 - Enhance links to astrophysical themes
- \rightarrow Endorsed by NuPECC LRP2010
- \rightarrow CUNA collaboration ready to host next (2012) meeting at Canfranc

Define common work packages for site-independent tasks