





## Wir schaffen Wissen – heute für morgen

### **Paul Scherrer Institut**

Marin Ayranov, Dorothea Schumann

**Project ERAWAST – Radionuclides for Astrophysical Application** 

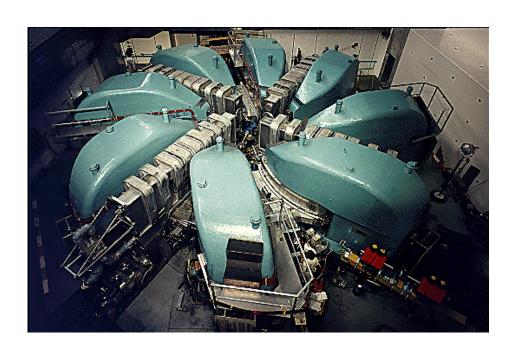


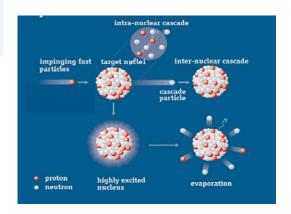
# **Objectives of ERAWAST**

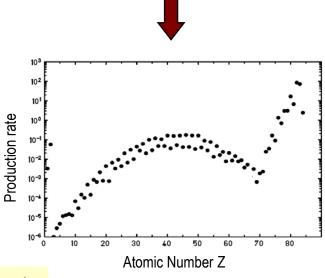
Exotic Radionuclides from Accelerator WAste for Science and Technology

```
<sup>7</sup>Be (53.3d), <sup>10</sup>Be (1.6·10<sup>6</sup>y), <sup>26</sup>Al (7.2·10<sup>5</sup>y), <sup>44</sup>Ti (60.4y), <sup>53</sup>Mn (3.7·10<sup>6</sup>y), <sup>59</sup>Ni (7.5·10<sup>4</sup>y), <sup>60</sup>Fe (2.6·10<sup>6</sup>y), <sup>32</sup>Si (172y) <sup>146</sup>Sm (1.03·10<sup>8</sup>y), <sup>182</sup>Hf (9·10<sup>6</sup>y)
```

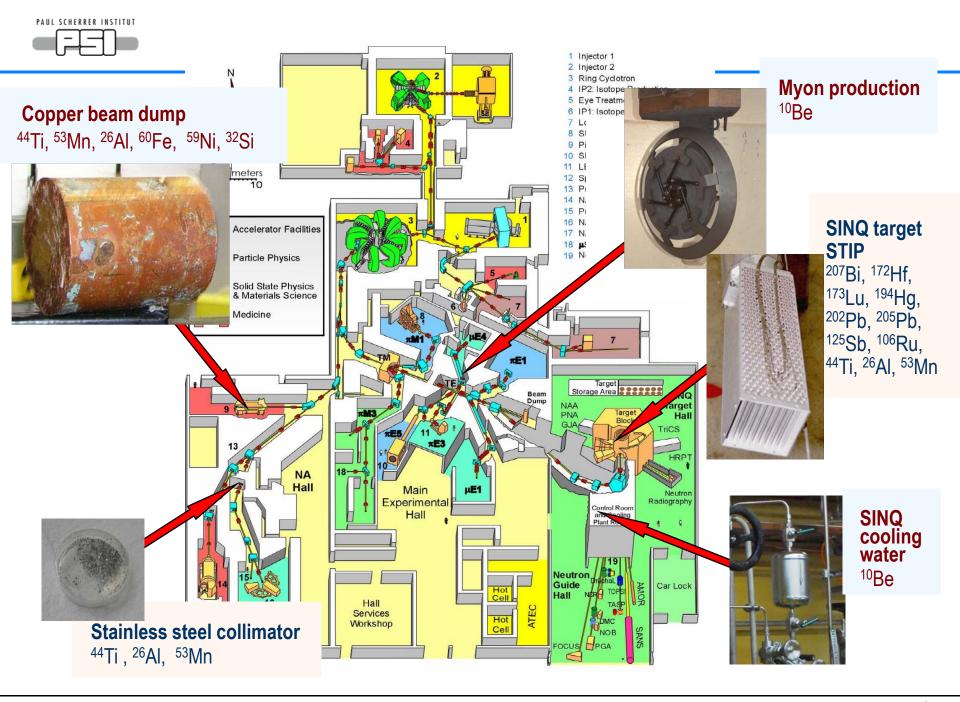
Application of exotic long-lived isotopes from accelerator waste


- Nuclide production facilities
- Basic physics research
- Geophysics and Astrophysics
- AMS and RIMS measurement groups
- Life science and nuclear medicine


Difficult, expensive and time consuming production




# Spallation Reactions High Energy Accelerator Facilities


**Cyclotron** 590 MeV protons, 3 mA







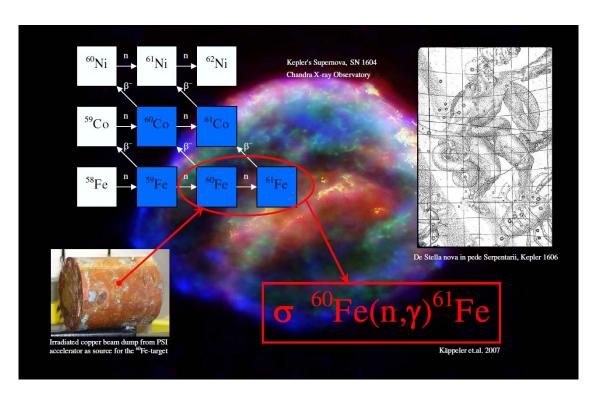
All elements of periodic table with  $Z \le Z_{target} + 1$ 





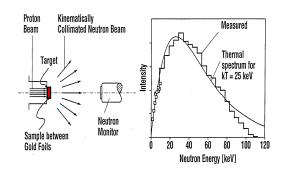
### **Summary**

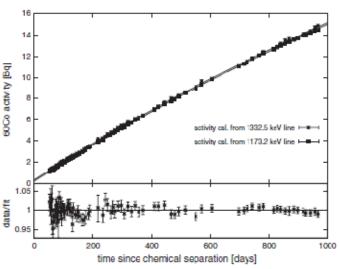
#### Radionuclides separated


- 7Be 10 GBq
- $^{10}$ Be  $-20~\mu g$
- 44Ti 10 MBq
- $^{53}$ Mn  $2 \cdot 10^{17}$  atoms
- 60Fe 5:1016 atoms

#### Radionuclides available

- <sup>7</sup>Be unlimited
- $^{10}$ Be  $^{100}$  µg
- $^{26}$ Al 20 kBq (10 $^{18}$  atoms)
- <sup>59</sup>Ni 8 MBq (10<sup>19</sup> atoms)
- 44Ti 0.5-1 GBq (10<sup>18</sup> atoms)
- <sup>53</sup>Mn 500 kBq (10<sup>19</sup> atoms)
- 60Fe 5·10<sup>16</sup> atoms
- <sup>32</sup>Si 10 MBq (10<sup>16</sup> atoms)
- Possibilities for other irradiation positions (SINQ, beam dumps, collimators)





# <sup>60</sup>Fe half-life and neutron capture cross section



 $\langle \sigma \rangle = 10.2 \pm 2.9 \text{ mbarn}$ 

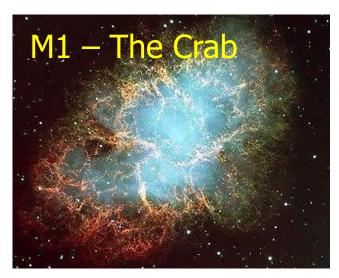
Physical Review Letters, 102 (15) 2009 Physical Review Letters, 103 (7) 2009





 $T_{1/2} = 2.62 \pm 0.04 \cdot 10^6 \text{ years}$ 

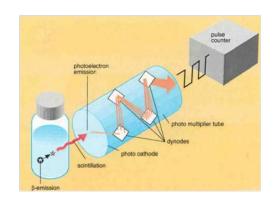



### **Core Collapse Supernovae**

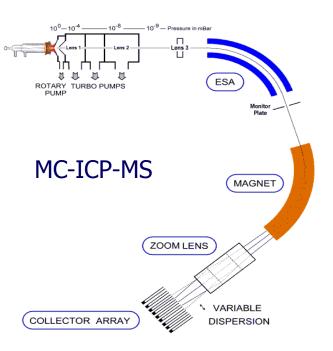
Explosion mechanism is extremely complex
Good diagnostic – <sup>44</sup>Ti
Produced in significant quantity
Gamma-ray observable – 1157 keV
Quantity produced is sensitive to
underlying physics

<sup>44</sup>Ti abundance determined by only a few key reactions:

Triple  $\alpha$   $^{40}$ Ca $(\alpha,\gamma)^{44}$ Ti  $^{44}$ Ti $(\alpha,\gamma)^{48}$ Cr  $^{44}$ Ti $(\alpha,p)^{47}$ V






#### <sup>10</sup>Be Half-life

**LSC** 



$$T_{\frac{1}{2^{10}Be}} = \frac{N_{\frac{10}{Be}}}{A_{\frac{10}{Be}}} \ln 2$$



- ICP-MS can measure isotope ratios for the Beryllium isotopes
   BUT only one stable Be isotope <sup>9</sup>Be
- Second point for mass bias correction <sup>7</sup>Be quantified by 478 keV gamma line
   <sup>7</sup>Be (53 d) → <sup>7</sup>Li (stable)
- ICP-MS in principle possible, but interference with <sup>7</sup>Li, <sup>10</sup>B



# 2nd workshop on Exotic Radionuclides from Accelerator Waste for Science and Technology (ERAWAST II)

from 29 August 2011 to 02 September 2011 (Europe/Zurich) Paul Scherrer Institut

#### Overview

Scientific Background

Scientific Programme

Accommodation

International Advisory Committee

Local organizing Committee

Abstracts and Proceedings

Registration

Deadlines

The goal

The first exploratory workshop, ERAWAST I, held at PSI in November 2006, explored the possibility of an international network for the exploitation of accelerator waste materials with regard to use as a source of exotic radionuclides for basic science and technological applications. The workshop brought together partners from both the production facilities as well as application domains. The main outcome of this workshop was the establishment of an international collaboration, and the identification of both "early-to realize" and "long-term" experiments and applications. After 5 years, it is time to evaluate the main achievements and to define future work and possibilities.

#### The topics

- Production and separation of exotic radionuclides
- Nuclear astrophysics
- Basic nuclear physics
- Accelerator mass spectrometry
- Nanotechnology
- Geophysics and geochemistry

#### Hosting organization

Paul Scherrer Institute Villigen, in cooperation with the Swiss National Science Foundation (SNSF).

Support

**Dates:** from 29 August 2011 00:00 to 02 September 2011 23:55

Timezone: Europe/Zurich

Location: Paul Scherrer Institut

Villigen (Switzerland)

Room: OSGA E06

Chairs: Dr. Schumann, Dorothea

Material: Announcements & Flyer

Template

http://indico.psi.ch/event/erawast Last modified: 07 December 2010 17:37



http://indico.psi.ch/event/erawast