aboratory Underground Nuclear Astrophysics

The seeds of the S-process: experimental issues in the study of ${}^{13}C(\alpha,n){}^{16}O$ and ${}^{22}Ne(\alpha,n){}^{25}Mg$

Paolo Prati

INFN and Dept. of Physics –Univ. of Genoa, Italy

lium shell flashes that characterize these stars

The ${}^{13}C(\alpha, n)$ reaction and its role as a neutron source for the *s* process

M. Heil,^{1,*} R. Detwiler,^{2,†} R. E. Azuma,^{2,3} A. Couture,^{2,‡} J. Daly,^{2,§} J. Görres,² F. Käppeler,¹ R. Reifarth,^{1,||} P. Tischhauser,^{2,¶} C. Ugalde,^{2,**} and M. Wiescher²

The temperature during the *s* process in the ¹³C pocket of 90×10^6 K (corresponding to a thermal energy of kT =8 keV) corresponds to a Gamow window around 190 keV (140–230 keV) for the (α , *n*) reaction on ¹³C. Since this energy is far below the Coulomb barrier, the reaction cross section is extremely small and not accessible to direct measurements. For this reason, its value has to be determined by extrapolation of the cross sections measured at higher energies. The extrapolation is complicated by the unknown influence of a broad subthreshold state with $J^{\pi} = 1/2^+$ at $E_x =$ 6.356 MeV ($E_{\alpha}^{\text{lab}} = -3$ keV), and by two subthreshold resonances with $J^{\pi} = 1/2^-$ at $E_x = 5.939$ MeV ($E_{\alpha}^{\text{lab}} =$ -547 keV) and $J^{\pi} = 3/2^+$ at $E_x = 5.869$ MeV ($E_{\alpha}^{\text{lab}} =$ -641 keV).

Karlsruhe 3.7 MV Van De Graaff

 α beam ~ 50 μ A

n-Detector: 4π Karlsruhe BaF₂ calorimeter (20 cm inner Φ ; thickness 15 cm) with n/ γ converter (paraffin loaded with Cd at 3%)

Total 41 crystals

In the Gamow peak region (140 -230 keV) ~1 count/month

The ¹³C(α , *n*) reaction and its role as a neutron source for the *s* process

M. Heil,^{1,*} R. Detwiler,^{2,†} R. E. Azuma,^{2,3} A. Couture,^{2,‡} J. Daly,^{2,§} J. Görres,² F. Käppeler,¹ R. Reifarth,^{1,1} P. Tischhauser,^{2,¶} C. Ugalde,^{2,**} and M. Wiescher²

$^{13}C(\alpha, n)$: Q-value = 2215.6 MeV ¹¹³Cd (n,γ) ¹¹⁴Cd $,\gamma$ -flash energy: 9.04 MeV BaF_2 efficiency ~ 95%

Multiplicity suitable for bck. reduction

2000

3000

The ¹³C(α , *n*) reaction and its role as a neutron source for the *s* process

M. Heil,^{1,*} R. Detwiler,^{2,†} R. E. Azuma,^{2,3} A. Couture,^{2,‡} J. Daly,^{2,§} J. Görres,² F. Käppeler,¹ R. Reifarth,^{1,||} P. Tischhauser,^{2,¶} C. Ugalde,^{2,**} and M. Wiescher²

~ 3 times the bck level	TABLE III. Experimental S factors.					
	$E_{\rm lab}$	E _{c.m.} Yield		S factor	Uncertainties (%)	
	(keV)	(keV)	(mC^{-1})	(10^6 MeV b)	Stat.	Sys.
$' \sim 1 \text{ mC}^{-1} \rightarrow 5 10^{-2} \text{ count/s}^{-1}$	416	318	0.97	1.17	92	11
	437	334	2.4	1.07	45	30
	439	336	2.0	0.80	42	40
N 00 01 5 1	449	343	3.4	1.14	23	23
$\gamma \sim 20 \text{ mC}^{-1} \rightarrow 1 \text{ count/s}$	493	377	21.4	1.11	4.3	17
	536	403	46.1	1.05	3.4	31
	568	435	119	0.92	1.8	11
	642	491	1034	1.11	1.8	6.4
Systematic: dominated by	695	531	3525	1.19	0.9	9.3
target deterioration	747	571	12169	1.48	0.5	9.0
ra ger derer of arton	800	612	32567	1.55	0.8	4.7
60	849	649	76240	1.70	0.2	5.0
50 new target	899	687	175813	2.00	0.1	5.0

At lowest energies: uncertainty dominated by counting statistics

The ¹³C(α , *n*) reaction and its role as a neutron source for the *s* process

M. Heil,^{1,*} R. Detwiler,^{2,†} R. E. Azuma,^{2,3} A. Couture,^{2,‡} J. Daly,^{2,§} J. Görres,² F. Käppeler,¹ R. Reifarth,^{1,¶} P. Tischhauser,^{2,¶} C. Ugalde,^{2,**} and M. Wiescher²

Extrapolation still needed: are we close enough to the Gamow region?

The ¹³C(α , *n*) reaction and its role as a neutron source for the *s* process

Thinking the influence of the T = 1/2 close to the reaction threshold needs to be considered. A variation of the resonance parameter Γ_{α} by factors between 0.17 and 2.5 causes only small changes in the χ^2 value but has significant consequences for the *S* factor. Hence, the uncertainty in this parameter is responsible for most of the uncertainty in our *S*-factor extrapolation. Unfortunately, the indirect studies discussed before have not succeeded in reducing this uncertainty by obtaining the reduced α width or ANC for this level. Since the results of these experiments differ substantially, these values may depend significantly on the choice of reaction or reaction model parameters.

TABLE XII. Comparison of stellar rates (in units of 10^{-14} cm³/mole s) for the ${}^{13}C(\alpha, n)$ reaction at $T = 0.1 \times 10^9$ K.

Authors	Reaction rate	Ref.
Caughlan and Fowler (1988)	2.58	[11]
Denker and Hammer (1995)	4.32	[12]
NACRE (1999)	$7.24^{+1.25}_{-4.98}$	[13]
This work	4.6 ± 1.0	

The ¹³C(α , *n*) reaction and its role as a neutron source for the *s* process

M. Heil,^{1,*} R. Detwiler,^{2,†} R. E. Azuma,^{2,3} A. Couture,^{2,‡} J. Daly,^{2,§} J. Görres,² F. Käppeler,¹ R. Reifarth,^{1,||} P. Tischhauser,^{2,¶} C. Ugalde,^{2,**} and M. Wiescher²

Any further improvement of the stellar rate requires an extension of the experimental data toward lower energies. Since the present technical possibilities appear to be exhausted, a reduction of the remaining uncertainty can probably only be achieved in an underground laboratory, where the cosmic-ray-induced γ background can be avoided.

LUNA estimate

Expected rate @ LUNA

¹³C(α ,n)¹⁶O Alpha beam intensity = 200 µA; Target: ¹³C, 2 10¹⁷ at/cm² (99% ¹³C-enriched), E_{beam} \leq 0.8 MeV (lab);

Expected sensitivity @ LUNA

With bck. ~ 1 cnt/day

Reaction	Q	Product	T_6	E_{0cm}	ΔE_{0cm}
$^{13}C(\alpha,n)^{16}O$	2215	n	80	172.3	39.8
			100	199.9	47.9
			200	317.5	85.4
	P CAT	1	300	415.9	119.7
$^{22}\mathrm{Ne}(\alpha,\mathrm{n})^{25}\mathrm{Mg}$	-478	n	200	461.5	103.0
1	1	a state	300	604.8	144.4

n production @ LUNA

 ${}^{13}C(\alpha,n){}^{16}O$

Alpha beam intensity = 200 μ A; Target: ¹³C, 2 10¹⁷ at/cm² (99% ¹³C-enriched), E_{beam} \leq 0.8 MeV (lab);

Michael Jaeger, PhD thesis, Stuttgart Univ., 2001

VOLUME 87, NUMBER 20

PHYSICAL REVIEW LETTERS

12 NOVEMBER 2001

²²Ne(α,n)²⁵Mg: The Key Neutron Source in Massive Stars
M. Jaeger,¹ R. Kunz,¹ A. Mayer,¹ J. W. Hammer,¹ G. Staudt,² K. L. Kratz,³ and B. Pfeiffer³

A new 4π neutron detector has been designed and tailored to this specific reaction. The reaction neutrons were thermalized in a cylindrical polyethylene moderator and subsequently captured by a setup of 12 proportional counters. The counters were arranged in two rings at radii optimized for the neutron energy of interest for this specific reaction. With this design, an absolute detection efficiency up to 50%, a low sensitivity for background neutrons, as well as some neutron energy information could be obtained simultaneously. The neutron detector assembly was surrounded by a plastic scintillator detector which served as a veto counter to suppress cosmic-ray-induced background. Several layers of passive shielding material (paraffin wax, polyethylene, boron, and cadmium) were arranged around the 4π neutron detector.

Possible development: high efficiency, (moderate) energy resolution, bck. reduction

η **~ 10%**

²²Ne(α ,*n*)²⁵Mg: The Key Neutron Source in Massive Stars

M. Jaeger,¹ R. Kunz,¹ A. Mayer,¹ J. W. Hammer,¹ G. Staudt,² K. L. Kratz,³ and B. Pfeiffer³

The RHINOCEROS windowless gas-target (developed in Stuttgart now in Notre Dame, IN)

The 99.9% enriched 22Ne target gas was continuously re-circulated to allow long term experiments in a specially designed reaction chamber with highly polished gold-plated walls. The high chemical purity of the gas was sustained by three purification elements: a cryogenic trap at liquid nitrogen temperature, a zeolite trap, and a getter purifier. The pressure was reduced by the differential pumping stages of the RHINOCEROS facility to several times 10⁻⁸ mbar.

²²Ne(α ,n)²⁵Mg: The Key Neutron Source in Massive Stars

12 NOVEMBER 2001

Moreover, ²²Ne(α ,n)²⁵Mg competes with ²²Ne(α , γ)²⁶Mg and therefore the σ of both the reactions is needed

Even with such low-energy neutrons, a coupled n-γ detector could be a step forward

²²Ne(α ,*n*)²⁵Mg: The Key Neutron Source in Massive Stars

M. Jaeger,¹ R. Kunz,¹ A. Mayer,¹ J. W. Hammer,¹ G. Staudt,² K. L. Kratz,³ and B. Pfeiffer³

LUNA estimate

Last estimate by A. Lemut, LBL, Ca

Expected rate @ LUNA

²²Ne(α ,n)²⁵Mg Alpha beam intensity = 200 μ A, Target: ²²Ne, 1 10¹⁸ at/cm², E_{beam} \leq 1 MeV (lab);

Reaction threshold

Reaction Rate (counts/day

Expected sensitivity @ LUNA

n production @ LUNA

²²Ne(α ,n)²⁵Mg Alpha beam intensity = 200 μ A, Target: ²²Ne, 1 10¹⁸ at/cm², E_{beam} \leq 1 MeV (lab);

Neutron background @ Gran Sasso

P.Belli et al., Nuovo Cimento 101A n. 6 (1989)

Neutron Energy	Flux (cm ⁻² s ⁻¹)
0.025 eV	(1.98 ± 0.05) 10 ⁻⁶
0.05 - 10 ³ eV	(1.08 ± 0.02) 10 ⁻⁶
1 keV - 2.5 MeV	(0.54 ± 0.07) 10 ⁻⁶
> 2.5 MeV	(0.23 ± 0.07) 10 ⁻⁶

~ 2.85 10³ m⁻² d⁻¹

(To be compared with ~ 5.5 10⁶ m⁻² d⁻¹ cosmic neutrons at sea level)

Unless the fast component is resolved (with a neutron spectrometer), a background rate of a few hundreds count/day is expected with a real detector installed at Gran Sasso

Passive shielding is required to achieve a background rate of ~1 count/day

Passive shielding is very effective underground: e.g. the LUNA set-up for ${}^{3}\text{He}(\alpha,\gamma)^{7}\text{Be}$

0.4 m³ Pb and Cu shield \rightarrow bck reduction: 10⁵

Not only shielding..

1000

Summary and open issues

• Significative room for improve the study of ${}^{13}C(\alpha,n)$ and ${}^{22}Ne(\alpha,n)$: in the first case very likely an underground experiment could definitively solve the problem. 0.1 < E_{α} < 1 MeV for both the experiments.

• New neutron detectors: Maybe a combination of previous designs (e.g. an "active" moderator + Cd foils + high resolution γ detectors).

 Proper passive shielding and clean detecting materials must be developed to fully exploit the advantages offered by the underground environment.

• Technical solution for using the same detector for both the experiments.

• ¹³C target production to enhance purity, stability, etc.

 New gas target with technical solution to prevent beam induced n background and contaminations