
1 Flux JPA Equations

Figure 1: Equivalent circuit

The Lagrangian density of the circuit in figure 1 is obtained by the sum of the
capacitive energies minus the inductive energies:
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where φL,R(x) is the flux variable defined as φ(x) =
∫ t
dt′V (t′) in the left (right)

transmission line and CL,R and LL,R are their capacitances and inductances per unit
length, and φJ = φR(x = L). σ(x) is the Heaviside (step) function. The (symmetric)
SQUID Josephson energy is:
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where E0J is the Josephson energy of the single junction.
We derive the equation of motions of the fields φR,L throught the Euler La-

grange equation for the lagrangian density:
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We then have:
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that are the wave equations for φL and φR and the equations with solution of the
form

φ(x, t) = φin(t− x/vp) + φout(t+ x/vp) (5)

and vp = 1/
√
LC. The other equations give the boundary conditions:
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where we recognize the Kirchhoff current conservation laws (KCL). These must
be solved in φout

L with φin
L as a initial condition for the input signal (for instance

φin = φ0
in sin (ωt)). We now replace space derivatives with time derivatives using

the wave equations
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φ̇ = φ̇in + φ̇out

and we express the differential equation in terms of in and out fields. From the first
two KLC equations 6 in x = 0 we have
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where Z0 = 1/Lvp (we are assuming in the following that transmission line and
resonator have same impedance Z0 = 50Ω). We want to determine the outgoing
signal φout

L as a function of the known incoming signal φin
L . Moreover the wave φout

R

incoming from the right to the capacitance is determined from the wave φin
R leaving

the capacitance a time interval 2L/vp in the past and then reflecting on the junction.
Then we look for an equation for φin

R as a function of the known term φin
L and the

causally independent wave φout
R . Then
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replacing φout
L in the first equation
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Both φout
R and φin

L are considered as initial conditions. In particular φout
R = 0 for

t < 2L/vp that is until the first wave reflects on the junction. Once we know
φin
R (t = t0, x = 0) we can solve the third of the KCLs 6 to determine φout

R (t =
t0 + L/vp, x = L). First we replace the space derivative with
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and obtained obtain the equation for φJ(t) = φout
R (t, x = L) + φout

R (t, x = L):
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where φin
R (t, x = L) = φin

R (t−L/vp, x = 0) is the value determined from equation 10.
Once φJ(t) is determined we can calculate the outgoing wave

φout
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that is inserted in equation 10 for the next iteration. For each iteration the output
field is calculated as
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