1 Flux JPA Equations
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Figure 1: Equivalent circuit
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The Lagrangian density of the circuit in figure 1 is obtained by the sum of the
capacitive energies minus the inductive energies:
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where ¢y, g(z) is the flux variable defined as ¢(z) = [ "dt'V (') in the left (right)
transmission line and Cf, g and Ly g are their capacitances and inductances per unit
length, and ¢; = ¢r(x = L). o(x) is the Heaviside (step) function. The (symmetric)
SQUID Josephson energy is:
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where FEj; is the Josephson energy of the single junction.
We derive the equation of motions of the fields ¢ throught the Euler La-
grange equation for the lagrangian density:
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We then have:
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that are the wave equations for ¢ and ¢ and the equations with solution of the
form

G(x,t) = ¢ (t — 2/vy) + ¢ (t + x/v,) (5)
and v, = 1/v/LC. The other equations give the boundary conditions:
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where we recognize the Kirchhoff current conservation laws (KCL). These must
be solved in ¢ with ¢ as a initial condition for the input signal (for instance
bin = @Y sin (wt)). We now replace space derivatives with time derivatives using

the wave equations
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and we express the differential equation in terms of in and out fields. From the first
two KLC equations 6 in x = 0 we have
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where Zy = 1/Lv, (we are assuming in the following that transmission line and
resonator have same impedance Z; = 50€2). We want to determine the outgoing
signal ¢3! as a function of the known incoming signal ¢%*. Moreover the wave ¢%*
incoming from the right to the capacitance is determined from the wave ¢% leaving
the capacitance a time interval 2L /v, in the past and then reflecting on the junction.
Then we look for an equation for ¢ as a function of the known term ¢ and the

causally independent wave ¢%*. Then
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replacing ¢9** in the first equation
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Both ¢%* and ¢ are considered as initial conditions. In particular ¢3¢ = 0 for
t < 2L/v, that is until the first wave reflects on the junction. Once we know
¢ (t = to,z = 0) we can solve the third of the KCLs 6 to determine ¢%*(t =
to+ L/v,,x = L). First we replace the space derivative with
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and obtained obtain the equation for ¢;(t) = ¢%*(t,x = L) + ¢%*(t,x = L):
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where ¢%%(t,2 = L) = ¢'#(t — L/v,, x = 0) is the value determined from equation 10.
Once ¢;(t) is determined we can calculate the outgoing wave

Ritw=L) = ¢p'(t+L/vy,x=0)=¢,(t) - otz =L) (13)
= 6s(t) = ¢ (t — L/vy,x =0)

that is inserted in equation 10 for the next iteration. For each iteration the output
field is calculated as

T =0R - R+ (v=0) (14)



