1 Flux JPA Equations

Figure 1: Equivalent circuit
The Lagrangian density of the circuit in figure 1 is obtained by the sum of the capacitive energies minus the inductive energies:

$$
\begin{aligned}
\mathcal{L}= & \left(\frac{1}{2} C_{L} \dot{\phi}_{L}{ }^{2}-\frac{1}{2 L_{L}} \phi_{L}^{\prime 2}\right) \sigma(-x)+\left(\frac{1}{2} C_{R} \dot{\phi}_{R}{ }^{2}-\frac{1}{2 L_{R}} \phi_{R}^{\prime 2}\right)[\sigma(x)-\sigma(x-L)](1) \\
& +\left(\frac{1}{2} C_{c}\left(\dot{\phi}_{L}-\dot{\phi}_{R}\right)\right) \delta(x)+\left[\frac{C_{J}}{2} \dot{\phi}_{J}^{2}+E_{J}\left(\phi_{e x t}\right) \cos \left(2 \pi \frac{\phi_{J}}{\phi_{0}}\right)\right] \delta(x-L)
\end{aligned}
$$

where $\phi_{L, R}(x)$ is the flux variable defined as $\phi(x)=\int^{t} d t^{\prime} V\left(t^{\prime}\right)$ in the left (right) transmission line and $C_{L, R}$ and $L_{L, R}$ are their capacitances and inductances per unit length, and $\phi_{J}=\phi_{R}(x=L) . \sigma(x)$ is the Heaviside (step) function. The (symmetric) SQUID Josephson energy is:

$$
\begin{equation*}
E_{J}\left(\phi_{e x t}\right)=2 E_{0 J} \cos \left(\pi \frac{\phi_{e x t}}{\phi_{0}}\right) \tag{2}
\end{equation*}
$$

where $E_{0 J}$ is the Josephson energy of the single junction.
We derive the equation of motions of the fields $\phi_{R, L}$ throught the Euler Lagrange equation for the lagrangian density:

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}+\frac{d}{d x} \frac{\partial \mathcal{L}}{\partial \phi^{\prime}}=\frac{\partial \mathcal{L}}{\partial \phi} \tag{3}
\end{equation*}
$$

We then have:

$$
\begin{aligned}
& \sigma(-x)\left[C_{L} \ddot{\phi}_{L}-\frac{1}{L_{L}} \phi_{L}^{\prime \prime}\right]+\delta(x)\left[C_{c}\left(\ddot{\phi}_{L}-\ddot{\phi}_{R}\right)+\frac{1}{L_{L}} \phi_{L}^{\prime}\right]=0(4) \\
& {[\sigma(x)-\sigma(x-L)]\left[C_{R} \ddot{\phi}_{R}-\frac{1}{L_{R}} \phi_{R}^{\prime \prime}\right]+\delta(x)\left[-C_{c}\left(\ddot{\phi}_{L}-\ddot{\phi}_{R}\right)-\frac{1}{L_{R}} \phi_{R}^{\prime}\right]+} \\
& \delta(x-L)\left[C_{J} \ddot{\phi}_{R}+\frac{1}{L_{R}} \phi_{R}^{\prime}+\frac{2 \pi}{\phi_{0}} E_{J}\left(\phi_{\text {ext }}\right) \sin \left(2 \pi \frac{\phi_{R}}{\phi_{0}}\right)\right]=0
\end{aligned}
$$

that are the wave equations for ϕ_{L} and ϕ_{R} and the equations with solution of the form

$$
\begin{equation*}
\phi(x, t)=\phi^{i n}\left(t-x / v_{p}\right)+\phi^{o u t}\left(t+x / v_{p}\right) \tag{5}
\end{equation*}
$$

and $v_{p}=1 / \sqrt{L C}$. The other equations give the boundary conditions:

$$
\begin{align*}
-\frac{1}{L_{L}} \phi_{L}^{\prime}=C_{c}\left(\ddot{\phi}_{L}-\ddot{\phi}_{R}\right) & (x=0) \tag{6}\\
-\frac{1}{L_{R}} \phi_{R}^{\prime}=C_{c}\left(\ddot{\phi}_{L}-\ddot{\phi}_{R}\right) & (x=0) \\
C_{J} \ddot{\phi}_{R}+\frac{1}{L_{R}} \phi_{R}^{\prime}+\frac{2 \pi}{\phi_{0}} E_{J}\left(\phi_{e x t}\right) \sin \left(2 \pi \frac{\phi_{R}}{\phi_{0}}\right)=0 & (x=L)
\end{align*}
$$

where we recognize the Kirchhoff current conservation laws (KCL). These must be solved in $\phi_{L}^{\text {out }}$ with $\phi_{L}^{i n}$ as a initial condition for the input signal (for instance $\left.\phi_{i n}=\phi_{i n}^{0} \sin (\omega t)\right)$. We now replace space derivatives with time derivatives using the wave equations

$$
\begin{align*}
\phi^{\prime} & =\frac{1}{v_{p}}\left(\dot{\phi}^{\text {out }}-\dot{\phi}^{\text {in }}\right) \tag{7}\\
\dot{\phi} & =\dot{\phi}^{\text {in }}+\dot{\phi}^{\text {out }}
\end{align*}
$$

and we express the differential equation in terms of in and out fields. From the first two KLC equations 6 in $x=0$ we have

$$
\begin{align*}
-\frac{1}{Z_{0}}\left(\dot{\phi}_{L}^{\text {out }}-\dot{\phi}_{L}^{\text {in }}\right) & =C_{c}\left(\ddot{\phi}_{L}-\ddot{\phi}_{R}\right) \tag{8}\\
\dot{\phi}_{L}^{\text {out }}-\dot{\phi}_{L}^{\text {in }} & =\dot{\phi}_{R}^{\text {out }}-\dot{\phi}_{R}^{\text {in }}
\end{align*}
$$

where $Z_{0}=1 / L v_{p}$ (we are assuming in the following that transmission line and resonator have same impedance $Z_{0}=50 \Omega$). We want to determine the outgoing signal $\phi_{L}^{\text {out }}$ as a function of the known incoming signal $\phi_{L}^{i n}$. Moreover the wave $\phi_{R}^{\text {out }}$ incoming from the right to the capacitance is determined from the wave $\phi_{R}^{i n}$ leaving the capacitance a time interval $2 L / v_{p}$ in the past and then reflecting on the junction. Then we look for an equation for $\phi_{R}^{i n}$ as a function of the known term $\phi_{L}^{i n}$ and the causally independent wave $\phi_{R}^{\text {out }}$. Then

$$
\begin{align*}
-\frac{1}{Z_{0}}\left(\dot{\phi}_{R}^{\text {out }}-\dot{\phi}_{R}^{\text {in }}\right) & =C_{c}\left(\ddot{\phi}_{L}-\ddot{\phi}_{R}\right) \quad(x=0) \tag{9}\\
\dot{\phi}_{L}^{\text {out }} & =\dot{\phi}_{R}^{\text {out }}-\dot{\phi}_{R}^{\text {in }}+\dot{\phi}_{L}^{\text {in }} \quad(x=0)
\end{align*}
$$

replacing $\phi_{L}^{\text {out }}$ in the first equation

$$
\begin{equation*}
2 \ddot{\phi}_{R}^{i n}+\frac{1}{C c Z_{0}} \dot{\phi}_{R}^{i n}=\ddot{\phi}_{L}^{i n}+\frac{1}{C c Z_{0}} \dot{\phi}_{R}^{\text {out }} \quad(x=0) \tag{10}
\end{equation*}
$$

Both $\phi_{R}^{\text {out }}$ and $\phi_{L}^{\text {in }}$ are considered as initial conditions. In particular $\phi_{R}^{\text {out }}=0$ for $t<2 L / v_{p}$ that is until the first wave reflects on the junction. Once we know $\phi_{R}^{i n}\left(t=t_{0}, x=0\right)$ we can solve the third of the KCLs 6 to determine $\phi_{R}^{\text {out }}(t=$ $\left.t_{0}+L / v_{p}, x=L\right)$. First we replace the space derivative with

$$
\begin{equation*}
\frac{1}{L_{R}} \phi_{R}^{\prime}=\frac{1}{Z_{0}}\left(\dot{\phi}_{R}-2 \dot{\phi}_{R}^{i n}\right) \tag{11}
\end{equation*}
$$

and obtained obtain the equation for $\phi_{J}(t)=\phi_{R}^{\text {out }}(t, x=L)+\phi_{R}^{\text {out }}(t, x=L)$:

$$
\begin{equation*}
C_{J} \ddot{\phi}_{J}+\frac{1}{Z_{0}} \dot{\phi}_{J}+\frac{2 \pi}{\phi_{0}} E_{J}\left(\phi_{e x t}\right) \sin \left(2 \pi \frac{\phi_{J}}{\phi_{0}}\right)=\frac{2}{Z_{0}} \dot{\phi}_{R}^{i n} \quad(x=L) \tag{12}
\end{equation*}
$$

where $\phi_{R}^{i n}(t, x=L)=\phi_{R}^{i n}\left(t-L / v_{p}, x=0\right)$ is the value determined from equation 10 . Once $\phi_{J}(t)$ is determined we can calculate the outgoing wave

$$
\begin{align*}
\phi_{R}^{\text {out }}(t, x=L) & =\phi_{R}^{\text {out }}\left(t+L / v_{p}, x=0\right)=\phi_{J}(t)-\phi_{R}^{\text {in }}(t, x=L) \tag{13}\\
& =\phi_{J}(t)-\phi_{R}^{i n}\left(t-L / v_{p}, x=0\right)
\end{align*}
$$

that is inserted in equation 10 for the next iteration. For each iteration the output field is calculated as

$$
\begin{equation*}
\phi_{L}^{\text {out }}=\phi_{R}^{\text {out }}-\phi_{R}^{i n}+\phi_{L}^{i n} \quad(x=0) \tag{14}
\end{equation*}
$$

