The *Fermi* gamma-ray sky: implications for cosmic-ray acceleration and propagation

Luigi Tibaldo
luigi.tibaldo@pd.infn.it

INFN & Dip. di Fisica “G. Galilei”, Università di Padova
AIM, Université Paris Diderot/SAp CEA Saclay

on behalf of the *Fermi* LAT Collaboration
1. The gamma-ray sky seen by the *Fermi* Large Area Telescope
The *Fermi* gamma-ray sky

Two years of LAT data, photons with energies > 1 GeV

nonthermal \rightarrow high-energy particles
Diffuse emission

Galactic interstellar emission: interactions of cosmic rays (CRs) with interstellar gas/radiation fields

Unresolved sources

Isotropic (extragalactic?) gamma-ray emission + residual background from misclassified cosmic rays

Exotic processes???
Gamma-ray sources

Abdo et al. 2010 ApJS 188 405

Credit: Fermi Large Area Telescope Collaboration
2. Overview of high-energy gamma-ray sources
Gamma-ray bursts

- both long (> 2 s, core-collapse supernovae) and short (< 2 s, compact object merging)
- emission mechanism: leptonic or hadronic?
- 31 GeV photon from GRB 090510 (z=0.903)
 - bulk Lorentz factor > 1000
 - limit on breaking of Lorentz invariance: $M > 1.19 \, M_{\text{Planck}}$

Abdo et al. 2009 Nature 462 331
Active Galactic Nuclei

- accretion on super-massive black hole
- first non power-law spectra: internal opacity or cutoff of accelerated particles?
- Centaurus A: first AGN resolved in gammas
- 3C 279: correlated gamma-ray flare and change in optical polarization → emission at $> 10^5$ gravitational radii from BH
- luminosity function → < 30% of extragalactic background made by unresolved AGNs
- open questions:
 - radiation mechanism: hadronic vs leptonic?
 - emission region and beam formation

Abdo et al. 2010 Science 328 765
External galaxies (non AGN)

- CR interactions in interstellar space, both nuclei and electrons
- from 1 to 5 detected so far
- local group (LMC, SMC, M31) or nearby starbursts (M82, NGC 253)
- the closest (LMC, SMC) are resolved → CR acceleration/propagation

Abdo et al. 2010 A&A 512 A7
Pulsars and pulsar winds

- PSR: rotating neutron stars with high magnetic fields
 - from 6 to > 70, including several gamma selected and ms
 - particle acceleration at high B
 - contribution to cosmic rays?
 - pulsar timing arrays → gravitational waves
- mechanical energy into PSR wind: particle acceleration at terminal shock
 - a few detected
- gamma-ray production mechanism is leptonic
- first variability detection from Crab Nebula:
 - synchrotron from PeV electrons within 17 light days → terminal shock

L. Tibaldo, The *Fermi* gamma-ray sky
Binaries and Nova(e)

- high-mass binaries (n star or black hole+star) identified as Gev-TeV sources through orbital modulation
 - emission mechanism unclear, most GeV spectra similar to PSR
- unexpected discovery of gamma-rays from a nova (white dwarf+red giant) → supernova little cousin
 - hadronic interactions of shock-accelerated ions?

![Fermi Detects Gamma Rays from Nova Cygni 2010](image)
Supernova remnants

- high-energy particles accelerated by collisionless shock acceleration
 - they do for electrons
 - not so obvious (yet) for ions
- SNRs resolved → association between gamma rays and shock region
- most associated with molecular clouds
- middle-aged SNRs (> 10^4 years):
 - show spectral break at few GeV
 - many favor hadronic scenario

L. Tibaldo, The *Fermi* gamma-ray sky
La Thuile, Feb 28 2011
3. Interstellar emission and the gamma/cosmic-ray connection
Local interstellar emission

- basic emission mechanisms understood
- no confirmation of GeV excess (related DM scenarios)

\[E^2 \times \text{Emissivity} \propto \text{MeV}^2 \text{s}^{-1} \text{sr}^{-1} \text{MeV}^{-1} \]

emissivity = gamma-ray emission rate per H atom

Abdo et al. 2009 PRL 103 251101

Large-scale emission from the Milky Way

- interstellar emission traces CRs throughout the Galaxy
- first surprise: large CR densities in outer Galaxy
 - large propagation halo (or more complex propagation scenarios)
 - dark accelerators or dark gas
- more to come from comparison with propagation models over the whole Galaxy
External galaxies: the role of massive stars

Emissivity maps of LMC shows correlation with:

- Hα line
- Wolf-Rayet stars and super shells

→ massive star formation

Abdo et al. 2010 A&A 523 L2

Gamma luminosity-star formation rate correlation.
4. Final remarks:
Particle Physics and Astrophysics
The technological link

E.g.: LAT advances due to Si tracking devices

- Improved angular resolution
- Improved detection efficiency (together with geometry ...)

Primarily developed in Particle Phys. experiments

→ large impact on HE Astrophys.
Cosmic-ray Physics

• Interfacing two infinities:
 • birth of subnuclear Physics
 • fundamental component of galaxies
 • signatures of Physics beyond the Standard Model?

• The LAT is contributing to the understanding of HE particles in the Universe
 • studying possible acceleration sites
 • tracing their spreading all around

• Interconnection with:
 • accelerator experiments
 • charged CR detectors
 • neutrino experiments
 • gravitational waves searches