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The ATLAS detector
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LHC collision data 2010

7 TeV

t: 164 pb

Z: 1.0 nb W/Z observation
W: 10.5 nb
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LHC collision data 2010

Many of the results shown today are 
being updated with the full 2010 data. 

7 TeV

t: 164 pb

Z: 1.0 nb W/Z observation

t
W/Z+jetsW: 10.5 nb

Updates!
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Z observation
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W observation

W  → e W  → 

 With ~300 nb-1 we observed the first 1000 W  → e and W  → .
 A clear signal over very small background in both electron and muon channel!
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W & Z cross section

W  l→  Z  ll→

 LHC & ATLAS continue the tradition of electroweak boson measurements and extend the 
field to new energies.
 Important tests of the Standard Model!
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W & Z – updated results

New cross sections very soon public, 
using full 2010 data.
 We already have many public plots of the W & Z 

kinematic distributions.
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Muon charge asymmetry from W

 In proton-proton collisions the 
production rate of W+ is significantly 
larger than W-.
 The proton contains two u and one d valence 

quarks.
 The W asymmetry depends on the 

momentum fraction x of the partons, which 
we observe as a dependence on .

 What we measure:

 This is the second analysis of this 
asymmetry from ATLAS.
 The first analysis used 310 nb-1 and 2 -bins.

W+

W-
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Charge asymmetry from W – uncertainties

Systematics:

 Trigger efficiency (2-7%)

∘ Geometrical acceptance  dependent.

 Muon reconstruction efficiency (1-7%)

∘ Geometrical acceptance  dependent.

 Muon momentum scale and resolution 
(1-2%)

 Luminosity (1%)

Main backgrounds:

 Z  → , with one  missed. (3%)
 W  → , with   → . (2%)
 Z  → , with one   → . (1%)
 tt  → bbqq. (1%)
 Multijet events with b/c  → . (<1%)

➔ Total: 7% background
 Implies systematic uncertainty of 1-2%.

 Statistical uncertainty:
 Statistical uncertainty is similar to systematic uncertainty per  bin. Typical values for both sources:

~4% in endcaps

~6% in barrel
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Charge asymmetry from W – conclusions

 W asymmetry increases with ||.
 Relates to parton distribution functions 

of valence quarks.

 Parton distribution functions 
agree the data.
 We expect that these results will further 

constrain next generation PDF 
uncertainties.

∘ Especially for low x valence quarks.
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LaThuile workshop

W+jets
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W  → e+jets W  → +jets

 With 1.3 pb-1, we measured 
cross section also for 
W/Z+jets.
 Important test of QCD

 Input to many physics 
analysis

 See talk by E. Meoni 
Tuesday!

 Here: W  l→ +jets cross 
section as function of pt of 
two leading jets.

Pythia: Leading-order generator

Alpgen, Sherpa: Match N+1 ME to a 
LL parton shower (rescaled to 
NNLO inclusive XS)

MCFM: NLO prediction at parton 
level for Njet≤2, LO for Njet=3
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W+jets – jet multiplicity

W  → e+jets W  → +jets

 Also the observed jet 
multiplicity agrees 
with simulation.
 The theoretical 

uncertainty is only 
shown for MCFM.

 Pythia does not 
reproduce the data at 
high jet multiplicity.

∘ 2  2 at matrix →
element level + 
additional jets 
from parton 
shower is 
insufficient.

 The uncertainties 
between bins are 
correlated.
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Di-bosons

 Searches for di-
boson events 
ongoing!
 Full analysis not 

finalized yet.

 WZ candidate on 
the left:
 M( )  = 96 GeV

∘ Muon p
T
 = 65 

GeV & 40 GeV

 M
T(

(e )  = 57 GeV

∘ Electron E
T
 = 65

∘ Neutrino E
T
  = 21 

GeV
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The top quark

Additional jets come from ISR/FSR.

Main LHC production modes (~80-85%) are 
gluon fusion:

(remaining 15-20% is qq-annihilation)

Decay modes:
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B-tagging

 Identification of jets originating 
from b-quarks very important in top 
physics.

 General concept: Exploit relatively 
long lifetime of B-hadrons resulting 
in flight times of O(few) mm.
 Identifiable secondary decay vertex.

optional muon 
from semileptonic
b decay

 Multiple techniques possible
 here comparatively simple and robust 

method exploited: 
selection based on decay length 
significance L / (L)

 Working point gives 50% efficiency for 
identifying b in tt, at mistag rate < 1%.
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e +  + 2 b-tagged jets
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Backgrounds – single lepton channel

 Multi-jet events.
 One lepton from a jet instead of the 

W.
 Reduced by:

∘ isolation criteria on the lepton

∘ B-tagging at least one of the jets

 W+jets.
 Reduced by:

∘ B-tagging at least one of the jets

 Irreducible:
∘ W+bb+jets.

 Z+jets 
 Where one lepton is not found  fake →

missing E
T

 Irreducible:
∘ Z+bb+ semileptonic.

 Single top + jets.
 Irreducible
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Estimating multi-jet background 
– single lepton channel

μ+jets contrib. from heavy flavour decays
 Use Matrix method: Define a loose 

selection in addition to the one used in 
the main event selection:

∘ r measured in Z  → μμ events

∘ f measured in 2 separate QCD 
enriched control regions

e + jets contribution from heavy flavour, γ 
→ ee , π±

 Use ET
miss  template fitting method where 

QCD templates are obtained from 2 
separate control regions.

∘ Jets with high EM fraction.

∘ Events with bad track quality. 

No E
T
miss+m

T
(W), 

1 jet, no b-tag

2 jets, no b-tag

2jets, all cuts included
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Estimating W+jet background 
– single lepton channel

Number of W+4jets was extrapolated from 
low-jet multiplicity control sample using 
Berends-Giele scaling

Number of W+4jets events

Fraction which are b-tagged

Accounts for different 
flavor composition for 2-jet 
and 4-jet events.
Estimated with ALPGEN.

Tag fraction in 
2-jet sample
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Jet multiplicities 
– single lepton channel
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Cross section determination 
– single lepton channel

Number of events passing all cuts:

Cross section after subtracting estimated background:

The result is confirmed by two fit based methods!
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Backgrounds – di-lepton channel

 Multi-jet events.
 Both leptons from a jet.
 Reduced by:

∘ isolation criteria on the lepton

∘ B-tagging at least one of the jets

 W+jets.
 One lepton from a jet.

 Di-boson events.
 E.g., WW
 Reduced by 

∘ requiring at least 2 jets

 Z+jets / Drell-Yan+jets 
 Reduce by 

∘ E
T
miss > 40 GeV (ee), 30 GeV (μμ)

∘ Z mass veto

∘ Scalar sum of E
T
 > 150 GeV for eμ channel

 Irreducible:
∘ Z+ semileptonic.

 Single top + jets.
 Irreducible
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Missing energy & HT 
– di-lepton channel

 The large Z/DY+jets background can be reduced by requiring missing transverse 
energy (neutrinos).

 Since eμ channel does not contain as many Z, a scalar sum of the transverse energy of 
all jets and  leptons was used instead.
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Estimating Z/Drell-Yan background
– di-lepton channel

 Define control region in Z-window 
and below the E

t
miss-cut.

 Control region = Z candidates

 Determine the ratio of events in 
control region and signal region 
from simulation.

 Estimate Z/DY contamination by 
counting number of events in 
control region, and multiply by the 
above ratio.

20 GeV

di-lepton mass

ET
miss

Z-mass

Control
Signal Signal

     Z → ll distribution
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Jet multiplicities 
– di-lepton channel

 Di-leptons left after selection:
 2 ee (2 pass b-tagging)
 3 μμ (1 pass b-tagging)
 4 eμ (2 pass b-tagging)

(Uncertainty on b-tagging efficiency implies that a better cross section estimate is obtained with untagged jets.)



32

2011-03-03LaThuile workshopR. Sandström

Cross section determination 
– di-lepton channel

Cross section after subtracting estimated background:
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Combining all channels

 Combining all single lepton and di-lepton 
channels in a joint likelihood fit.
 Accounts for all systematics and correlations.

 The results agrees with theoretical 
prediction.
 Agreement between ATLAS & CMS results.
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Updating the tt results

 The whole analysis is being updated with full 2010 data.
 >1 order of magnitude more events.

 Invariant mass of 3-
jet combinations in 
single lepton channel.

 Jet multiplicity in 
single lepton channel.

 Number of b-tagged 
jets in di-lepton 
channel.
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LaThuile workshop

Summary

 Many Standard Model measurements were 
made. 

 W & Z cross section
 The measurements agree with theory.

 W  →  asymmetry
 New analysis using 31 pb-1.

 Will provide useful information for low x.

 W/Z + jets cross section
 Measured cross section as function of jet multiplicity 

agrees with NLO simulation.

 ATLAS has measured the top pair production 
cross-section at the LHC in the first 2.9 pb-1 of 
data.

 The cross-section is measured to be

 Agreement was found:
 between the 5 subchannels (e±, µ±, e+e− , µ+µ− , e±µ∓ )

 in kinematic properties of selected events with SM tt 
production

 with (NLO/NNLO) QCD predictions

 with CMS 
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Backup slides

www.atlas.ch
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Z+jets
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Motivation to study top quarks

 Precision EW+Higgs physics very 
sensitive to top mass.

 Top appears in many extensions to the 
Standard Model:
 Heavy resonances pp  Z'  t→ → t

 FCNC (highly suppressed in SM)

 Charged Higgs

 Top as background:
 Di-boson: WW,WZ,ZZ
 Higgs: H ZZ, ...→
 Susy: stops
 ...

 To do list for 2011:
 Top mass
 Single top production cross-section
 Top properties

∘ Wtb vertex structure

∘ top quark charge

∘ spin correlations

 FCNC
 Heavy resonances
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Event selection

Cosmics,pile-up rejection: 5 tracks from primary vertex ≽
Trigger: Single lepton trigger, pT>10 GeV (fully efficient at 20 GeV)
Leptons: electron or muon, pT>20 GeV, isolated (to suppress leptons from hadrons 
decaying in-flight and semi-leptonic production in heavy flavor jets),  |η|<2.5
Jets: anti-kt, R=0.4, |η|<2.5 

Single lepton channel

Exactly 1 lepton (е or μ)
 ≽4 jets with pT>25 GeV
 ≽1 with b-tag (50% efficiency working point)
 ETmiss >20 GeV (reject QCD BG)
 ETmiss + mT(W) > 60 GeV (“triangular cut”)

Dilepton channel

Exactly 2 leptons(ее, μμ, еμ) with
opposite charge
 ≽2 jets with pT>20 GeV, no b-tag
 ee: |Mee -MZ| > 5 GeV , ETmiss >40 GeV 
 μμ: |Mμμ -MZ| > 10 GeV, ETmiss>30 GeV
 eμ: HT>150 GeV (HT is scalar sum of pT of 
leptons and selected jets )



40

R. Sandström 2011-03-03LaThuile workshop

Cross section determination

 A binned likelihood fit was used to extract the cross-section.
 Expected number of events:

 L = luminosity, ε = efficiency * acceptance ,   = variation of acceptance and 
background due to systematic uncertainties.

 For each channel, define likelihood:

Counting experiment  Use →
Poisson to model Nobs given Nexp 

(contains cross-section as fit 
parameter)

Luminosity uncertainty 
is a nuisance parameter, 
 modelled by a 
Gaussian. 
L

0
=2.9 pb-1, δ

L
=11% 

Systematic uncertainties (JES, lepton 
efficiencies, uncertainties on data-
driven measurements, etc) are 
modelled by Gamma functions
(  Gaussian at limit of small →
uncertainty)
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Cross section uncertainties
– single lepton channel

Control plots:
Invariant mass
of jets

Uncertainty Single electron Single muon

Statistical 43% 29%

Jet energy scale 13% 11%

B-tagging efficiency -10% / +15% -10% / +14%

Multi-jet background 30% 2%

W+jet background 11% 11%
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