QCD physics at ATLAS

Evelin Meoni

On Behalf of the **ATLAS** Collaboration

Les Rencontres de Physique de la Vallée d'Aoste La Thuile, Aosta Valley, Italy February 27 - March 5, 2011

Introduction

- QCD measurements represent an extensive part of the early physics program at ATLAS:
 - Hard QCD : the jet physics (high p_T)
 - Soft QCD : all the processes with low p_{T} transfer
- Motivations:

Measurement of the QCD processes important as precise test of the Standard Model (SM) at the unexplored LHC domain and crucial to searches for new physics:

- Hard QCD main background for many SM and beyond SM processes
- Deviation from high $p_T QCD \rightarrow$ hint to new physics
- QCD measurements are the only way to verify and improve phenomenological models for soft physics (e.g. in Monte Carlos) at LHC energies

Outline

Conclusions

3

The ATLAS Detector

44m Inner Detector: EPJC 70 (2010) 3 technologies (Pixel detectors, semiconductor tracker and transition radiation tracker) in a 2T solenoidal magnetic field up to $|\eta| < 2.5$ resolution ~ 4% for $p_T = 100 \text{ GeV}$ 25m · EPJC 70 (2010) 723 **Calorimeters:** EPJC 70 (2010) 755 EPJC 70 (2010) Tile calorimeter Good granularity (transverse and longitudinal sampling) LAr hadronic end-cap and forward calorimeters and coverage ($|\eta| < 4.9$) \rightarrow Good angular resolution Toroid magnets LAr electromagnetic calorimeters Transition radiation tracker EM : Pb/Liquid Argon (both in Barrel and Endcap) Muon chambers Solenoid magnet Semiconductor tracker HAD: Fe/scintillation tiles (Barrel) – Cu/Liquid Argon (Endcap) $\sigma / E \approx 10 - 17\% / \sqrt{E} \oplus 0.7\%$ (EM) Forward (EM and HAD) : Cu/W –LAr $\sigma/E \approx 50\%/\sqrt{E} \oplus 0.3\%$ (HAD) Non compensating calorimeter (e/h \neq I) $\sigma/E \approx 100\% / \sqrt{E} \oplus 10\%$ (Forward) Muon Spetrometer: EPJC 70 (2010)

4 technologies (MDTs and CSCs as precision chambers, RPCs and TGCs as trigger chambers) in a toroidal magnetic field in air (3 magnets) → Resolution ~10% for muon p_T = 1 TeV (standalone measurement) 4 Evelin Meoni La Thuile, 2011

The Data

ATLAS recorded in 2010 about 45 pb⁻¹ at 7 TeV
 Most measurements shown today use 17 nb⁻¹ to 3 pb⁻¹ (updates with more data are coming)
 Measurement with early data: luminosity
 uncertainty 11%, low pileup, unprescaled triggers

Efficiency

- Triggers employed in most of the measurements:
 - Minimum-bias scintillator triggers (MBTS): 2 disks
 located between inner detector and end-caps
 (2.09<|η|<4.09)
- calorimeter jet triggers (first level employed for early measurement) used in their ~100% efficiency domain

The Monte Carlos

- LO Matrix elements + parton showers MCs:
 - Pythia 6.241 (MRST2007 LO* PDFs)
 Default Parameter tunes: ATLAS-MC09 (tuned to Tevatron 0.630-1.8 TeV underlying event and minimum bias data),
 Other tunes:

Perugia 2010 (tuned to Tevatron and SppS minimum bias data),

DW (tuned to CDF Run II underlying event, dijet and Drell-Yan data)

• Alpgen + Herwig + Jimmy (CTEQ6L1 PDFs)

• Sherpa

- Herwig6 + Jimmy / Herwig++
- NLO calculations:
 - NLOJet++ 4.1.2 (CTEQ6.6 and MSTW2008)
 - MCFM (CTEQ6.6) for W/Z +jets studies

Pythia (or Alpgen) samples fully simulated employed to correct the data back to particle level (used a bin-by-bin unfolding procedure)

Sherpa and Herwig used for x-checks and systematics estimations

NLO prediction corrected for non perturbative effects for comparisons with data at particle level

Jet reconstruction

JET building:

- Input from **3D topological clusters**
- Jet inputs clustered with **anti-k**, **algorithm**: Infra-red and collinear safe sequential algorithm, produces cone-like jets, distance parameters: R = 0.4, 0.6
- JET Energy scale: jet energy scale established offline via MC-based calibration factors as a function of η and p_T (MC validated with test beam data) JES uncertainty (dominant systematic uncertainty in all the analyses) Estimation derived combining information from test-beam data, early collisions data and MC simulations below 7% for central jets with JES uncertainty (dominant systematic uncertainty in all the analyses) Estimation derived combining information from test-beam data, early collisions data and MC simulations below 7% for central jets with

La Thuile, 2011

8

Jet shapes (1/2)

arXiv:1101.0070 Accepted by Phys Rev. 🙏 Jet

- Probe the jet internal structure using its constituents (the clusters)
- > Jet shape is sensitive to non perturbative fragmentation effects, underlying event
 - ➔ Good test of Parton Shower models

The Differential jet shape $\rho(r)$ is the fraction of jet p_T within r - $\Delta r/2$ and r + $\Delta r/2$

EPIC 71 (2011) 1-59

Data /

₹ 0

2

З

2

2

 $0 < |y| \le 0.3$

Inclusive jet cross section (1/2)

10²¹

10¹⁹

- **Importance**:
 - Probe pQCD
 - Sensitive in the tails to New Physics
 - Understand dominant background for many analyses
 - Early testing ground for jet performance

The measurement:

- Jets with $p_{T} > 60 \text{ GeV}, |y| < 2.8$
- Pythia-derived bin-by-bin unfolding
- Dominant systematic uncertainty: jet energy scale (impact at $\sim 40\%$)
- Comparison with the shapes of LO **ME+PS MCs** : in general, agreement with data.

Evelin Meoni

d²ơ/d*p*_⊤d*y* [pb/GeV] $1.2 < |v| \le 2.1 (\times 10^3)$ 10¹⁷ HERWIG6 (× 1.0) $2.1 < |v| \le 2.8 (\times 1.0)$ 10¹⁵ $0.3 < |y| \le 0.8$ 10¹³ 000 10¹ $0.8 < |y| \le 1.2$ 10[°] 808000000 10^{7} $1.2 < |y| \le 2.1$ 10^t 10³ 10 $2.1 < |y| \le 2.8$ 10⁻¹ ATLAS 10⁻³ 200 400 200 300 400 500 100 p_{τ} [GeV]

Inclusive jet double differential cross-section

PYTHIA6 Perugia0 (x 1.0

PYTHIA6 MC09 (x 0.78

anti-k, R = 0.6, L dt=17 nb

as a function of p_{τ} in different rapidity regions

 $0 < |v| \le 0.3 (\times 10^{12})$

 $0.3 < |v| \le 0.8 (\times 10^9)$ $0.8 < |y| \le 1.2 (\times 10^6)$

Inclusive jet cross section (2/2)

Comparison to NLO pQCD+ non perturbative corrections (at level of 5% over most the kinematical region, increase with decreasing p_T)

ATLAS-CONF-2010-084

Importance:

- test the higher order $\ensuremath{\mathsf{pQCD}}$
- multijet final state relevant in searches

• The measurement :

- at least 2 jets: first p_T >60GeV, others p_T >30 GeV (|y|<2.8)
- Unfolding done with Alpgen (+Herwig+Jimmy)
- Main systematics: Jet Energy scale (including 'close-by jets' effects)
- Data compared to ME+PS : Alpgen (+ Jimmy + Herwig) and Pythia (shapes only): agreement within the uncertainties
- Ratio measurement: the systematics from jet energy scale considerably reduced, good agreement data MC confirmed

|4

Evelin Meoni

W+Jets cross section

Importance: Vector Boson+jets cross section stringent test of pQCD and background for SM and beyond SM processes

The measurement:

- Lepton trigger (e or μ), 1 electron with E_T>20 GeV |n|<1.37 or 1.52<|n|<2.47 or 1 muon with p_T >20 GeV and $|\eta|$ <2.4, Missing E_T >25 GeV, M_T > 40 GeV Jet (anti-k, R=0.4) with $p_T > 20 \text{ GeV} |\eta| < 2$ $\sigma(W + \ge N)$ jets) [pb] $\sigma(W + \ge N)$ $\Delta R_{iet.lepton} > 0.5$ W→ev + jets Alpgen

10

10

1.5

0.5

Ldt=1.3 pb⁻¹

ATLAS

≥0

≥1

- QCD background estimated by data driven method : fitting signal+background templates to the E_{τ}^{miss} distribution in data
- Alpgen samples for unfolding

The comparisons:

16

Pythia+PS (2→1 ME + 2→2 ME) doesn't ata provide a good description of data for Niet Alpgen and Sherpa show good agreemer § MCFM NLO (LO for N_{iet}=3) predictions also in agreement

arXiv:1012.5382 Submitted to Physics Letter

Sherpa

Pythia MCFM

≥2

Z+Jets cross section

Cross section 10 times smaller that W+jets (first measurement affected by large statistical uncertainty)

Measurement done in the same kinematical region of the W+jets analysis for Leptons and Jets 71GeV<M_z<111 GeV

ATLAS Preliminary

 $10\frac{2}{50}$ 60 70 80 90 100

Alpgen and Sherpa (NNLO normalization) agree with data Pythia $(2 \rightarrow 2 \text{ process normalized at})$ the inclusive 1 jet bin of data) underestimates cross-section and ratio MCFM at NLO describes the data

ATLAS-CONF-2011-001

110 120 130

m_{e*e} [GeV]

- Data 2010 (\s = 7 TeV)

arXiv:1012.4389,

Inclusive Isolated Prompt photon cross section

Signal :

18

Conclusions

- Presented first QCD results at ATLAS with early data:
 - Soft QCD: Understanding of soft QCD crucial in hadronic environment
 - Tuning to LHC data in progress
 - Hard QCD: Results compared to LO+PS MCs and to NLO pQCD predictions corrected for non perturbative effects
 - Good agreement between Data and Theory
 - First steps for SM backgrounds estimations to search of New Physics
- Detector working well and understanding of it improving continuously
- Expect significant updates of analyses soon with the full
 2010 dataset

BACKUP

20

arXiv:1101.0070 Accepted by Phys Rev.

> Jet Shape is sensitive to the type of partons (quark or gluon) that give rise to jet

For illustration, separate contribution from quark- and gluon-initiated jets.

At low p_T , data similar to gluon-initialized jets (dominance of hard process with gluons) At high p_T , data mixture of quark and gluon jets convoluted with perturbative QCD effects related to the running of the strong coupling

JET Energy Scale

EPJC 71 (2011) 1-59

• Average jet energy scale correction as a function of the jet p_T at the EM scale

JES Uncertainty

Experimental Conditions and Calibrations:

Dead Material: used dedicated geometry model in simulation (additional material amount estimated with test beam data and comparison 900 GeV data-MC) <u>Noise Threshold:</u> possible discrepancy data-MC evaluated in MC, varying the level of noise (used a conservative estimation taken from special monitor runs) <u>Beam Spot :</u>Varied the beam spot position in MC to account for possible shifts data-MC

EM scale : EM scale uncertainty is 3% in LArs and 4% inTile

JES calibration non-closure: deviation from unity of the final jet energy response, used the largest deviation observed

EP|C 71 (2011) 1-59

- Hadronic Shower Model: used 2 different MCs and compared with test beam data on single pions, test beam data lie between the 2 descriptions and the variations are within $\pm 4\%$
- Generators: account for different fragmentation, UE and other parameters in different MC
- **Pileup** : look in the data at the average energy deposit in calorimeter as a function of the number of vertices
- Eta intercalibration: in forward region the uncertainty derived from the one in the central region adding an additional contribution using p_T balance of forward jets in dijet events

The jet energy scale uncertainty includes the uncertainty on missing E_T . The main contribution to the ``sum of other uncertainties" was from the QCD background

Z+jets

Systematical uncertainties on the cross section

Z+jets

Uncorrected distributions with the full 2010 datasets

