Charmonium-like Spectroscopy: Potentials of Current Generation of Experiments

Silvano Tosi Università & INFN Genova

SuperB Physics Retreat, Valencia January 7-15th 2008

Introduction

- A huge amount of results on states with $c\bar{c}$ content are being reported.
 - BABAR and Belle are contributing enormously exploiting largest datasets.
 - great contributions also by BES, CLEO and Tevatron.
 - Several production mechanisms are used: prompt production, continuum production, ISR, $\gamma\gamma$ collisions, *B* decays,
- Bound states of $c\bar{c}$ quarks are a fundamental laboratory to study QCD.
 - Some recent results do not fit well within the ordinary charmonium picture.
- Charmonium: bound states of c and \overline{c} .
 - not all J^{PC} quantum numbers allowed (e.g. 0^{--} , 0^{+-} , 1^{-+} , ...);
 - below $D\overline{D}$ threshold, only electromagnetic or α_s -suppressed decays: mostly narrower states;
 - above *DD* threshold, mostly broader states.
- QCD foresees a richer spectroscopy: hybrids, tetraquarks, molecules, etc...
 - are we seeing hints of this richer spectroscopy ?

The States with Hidden Charm

- Several ordinary charmonia above threshold are missing: important to identify them.
 - A few are expected to be narrow: ${}^{1}D_{2}$, ${}^{3}D_{2}$ (and ${}^{3}D_{3}$): detectable into $h_{c}/\chi_{c}\gamma$ and $\eta_{c}/\psi\pi\pi$.

- Many broad states: open charm decays.

- Hybrids: \overline{qq} +gluons \rightarrow lightest state 1⁻⁺; main decays $D\overline{D}^{**}$. Sor
- **Tetraquarks**: $[qq'][qq'] \rightarrow$ several states foreseen; narrow widths.
- **Molecules**: $[q\overline{q}^{(')}][q\overline{q}^{(')}] \rightarrow$ less states; also narrow widths.
- At *B*-Factories, these states can be accessed using various production mechanisms:
 - formation in e^+e^- ISR: can only produce 1⁻⁻ states via single virtual photon;
 - $-\gamma\gamma$ collisions: produce C=+ states;
 - *B* decays: all quantum numbers in principle accessible;
 - $-e^+e^- \rightarrow \gamma^* \rightarrow X_{c\bar{c}}Y_{c\bar{c}}$: the quantum numbers of X and Y must combine to form 1⁻⁻;
 - decays from higher mass charmonium(-like) states: selection rules apply.
- Large statistics is very important, especially for $DD^{(*)}$ decays.
- Hadron colliders have limited power:

- can't access all final states; less capabilities of measuring J^{PC} .

- Some clear exotic signatures:
 - quantum numbers,
 - charged states,
 - unnaturally small widths

Spectrum of Charmonium States

- Basically all states below the open charm threshold are observed and explained.
- Several levels above threshold are still missing.
 - Many states are being discovered in this mass region, but not all fit well within the expected spectrum.

New States Above Threshold

State	experiments	M (MeV)	Γ (MeV)	JPC	Decay modes	Production mechanisms
X(3872)	Belle, CDF, D0, BABAR	3871.2±0.5	< 2.3	1 ⁺⁺ (2 ⁻⁺ ?)	π⁺π⁻J/ψ, π⁺π⁻π ⁰ J/ψ	B decays, pp
	Belle, BABAR	$\frac{3875.4 \pm 0.7^{+1.2}}{3875.1^{+0.7}}_{-0.5} \pm 0.5$	$3.0^{+1.9}_{-1.4} \pm 0.9$		$D^0D^0\pi^0,\ DD^*$	B decays
Z(3930)	Belle	3929±5±2	29±10±2	2++	$D^{0}D^{0},D^{+}D^{-}$	YY
Y(3940)	Belle, BABAR	3943±11±13 3914.3 ^{+3.8} - _{-3.4} ±1.9	87±22±26 33 ⁺¹² -8±5	???	ωJ/ψ	B decays
X(3940)	Belle	3942 ⁺⁷ -6±6	37 ⁺²⁵ -15 ± 8	??+	DD*	$e^+e^- \rightarrow J/\psi X$
Y(4008)	Belle	4008±40 ⁺⁷² -28	226±44 ⁺⁸⁷ -79	1	$\pi^+\pi^-J/\psi$	ISR
X(4160)	Belle	4156 ⁺²⁵ -20±15	139 ⁺¹¹¹ -61±21	??+	D*D*	$e^+e^- \rightarrow J/\psi X$
Y(4260)	BABAR, Cleo, Belle	$4259\pm8^{+8}_{-6}$ $4284^{+17}_{-16}\pm4$ $4247\pm12^{+17}_{-32}$	$88\pm23^{+6}_{-4}$ $73^{+39}_{-25}\pm5$ $108\pm19\pm10$	1	π ⁺ π ⁻ J/ψ, π ⁰ π ⁰ J/ψ, K ⁺ K ⁻ J/ψ	ISR
Y(4350)	BABAR Belle	4324±24 4361±9±9	172±33 74±15±10	1	$\pi^+\pi^-\psi(2S)$	ISR
Z ⁺ (4430)	Belle	4433±4±1	44+17+30-11	π^{7}_{-13} π^{+30}_{-11} ??? $\pi^{+}\psi(2S)$		B decays
Y(4620)	Belle	4664±11±5	48±15±3	1	$\pi^+\pi^-\psi(2S)$	ISR

Updates on 1⁻⁻ **Charmonium States**

BES fit: interference and energy-dependent hadronic width taken into account:

	ψ (3770)	<i>\psi</i> (4040)	ψ(4160)	ψ (4415)
M (MeV)	3771.4±1.8	4039±5	4192±6	4415±8
Γ (MeV)	(MeV) 25±7		73±15	73±21
δ (°)	0	133±68	301±61	246±86

First exclusive decay observed for $\psi(4415)$: $DD_{2}^{*}(2460)$ [dominant] $\rightarrow^{3}D_{1}$ candidate

• CLEO: ratios between $\Gamma(\chi_{cJ}\gamma)$ consistent with $\psi(3770)$ being dominantly ${}^{3}D_{1}$ PRD 74, 031106 (2006) • No sign of any of the new Y states! Different wrt ordinary charmonia!

X(3872)

Belle: PRL 91 (2003) 262003

BaBar: PRD71 (2005) 071103

BaBar: PRD73 (2006) 01110

BaBar: PRD74 (2006) 07110

CDF: PRL93 (2004) 072001

DO: PRI 93 (2004) 162002

- Decays
 - $X \rightarrow J/\psi \pi^+ \pi^-$
 - Possibly $J/\psi \rho$
 - Discovered by Belle; confirmed by *BABAR*, CDF, D0
 - $BF(J/\psi \omega) \sim BF(J/\psi \rho)$
 - $-X \rightarrow J/\psi \gamma Z$
 - Charged partners in $J/\psi\pi^+\pi^0$ not seen \mathbf{Y}
- Implications:
 - C(X) = +1
 - $C(\pi\pi \operatorname{in} J/\psi\pi\pi \operatorname{decay}) = -1$
 - $I(\pi\pi)=L(\pi\pi)=1 \rightarrow \text{consistent with } J/\psi \rho \text{ decay}$
- Production
 - B-meson decays at B-Factories;
 - inclusive production in $p\overline{p}$ collisions at Tevatron;
 - no prompt e^+e^- production observed (*BABAR* **Phys.Rev.D76, 071102, 2007**)

 $\begin{aligned} &\sigma(e^+e^- \rightarrow X(3872)X) \times BR(X(3872) \rightarrow J/\psi \gamma) \times \\ &BR(X \rightarrow (N_{ch} > 2)) < 5.1 \text{ fb}, 90\% \text{ C.L.} \end{aligned}$

consistent with no mass and rate difference

- *DD** molecule ?
 - Right above the threshold, but R_{0+} expected smaller.
 - Favours $D\overline{D}^*$ decay over $J/\psi\pi\pi$ over $J/\psi\gamma$ (as observed)
- Tetraquark ?
 - Explains small width
 - Predicts a set of 4 states (2 charged and 2 neutral). Finding the charged states is critical
- Other hypotheses (threshold cusp, charmonium $\chi_{cl}(2P)$, hybrid) mostly ruled out.

What can be done on X(3872)

- Resolve the puzzle of how many X states are there.
 - Improve knowledge of lineshape in DD^*
 - Modes with $D^{(*)}$ currently suffer from low statistics
- Resolve between 1⁺⁺ and 2⁻⁺
 - Angular analyses require large statistics.
- Reduce the uncertainty on mass differences:
 - The state seen in B^+ and B^0 may be different in some models
- Reduce the uncertainty on R_{0+} :
 - The ratio is different from 1 in some models
- Identify or put more stringent limits on charged partners
- Search for more decay modes and production mechanisms
 - Limits on $J/\psi \pi^0 \pi^0$
 - $X \rightarrow \psi(2S) \gamma;$
 - *B* decays other than XK^+ and XK_s .

- ...

States Around 3940 MeV

• Discovered by Belle.

		J (1)		
X	$e^+e^- \rightarrow J/\psi X (X \rightarrow D\overline{D^*})$	0-+,1++	3943±8	<39
Y	$B \to Y K (Y \to J/\psi \omega)$	1++,	3943±17	87±34
Ζ	$\gamma\gamma \to Z \ (Z \to D\overline{D})$	2++	3929±5	29±10

Z: properties consistent with $\chi_{c2}(2P)$.

• 3 different states or maybe less?

arXiv:0711.2047

• *Y*(*3940*): new result, based on 350 fb⁻¹:

 $\begin{array}{lll} M(Y) &=& (3914.6^{+3.8}_{-3.4}(stat)^{+1.9}_{-1.9}(syst)) \ {\rm MeV/c}^2 \\ \Gamma(Y) &=& (33^{+12}_{-8}(stat)^{+5}_{-5}(syst)) \ {\rm MeV} \,. \end{array}$

- Belle's result for $B \rightarrow Y K$, $Y \rightarrow J/\psi \omega$ confirmed
 - $-\sim 30 MeV$ lower mass than Belle's
 - Narrower width
 - Clear demonstration of decay into ω
 - Preliminary BF estimate similar to Belle (~10⁻⁵)

• No evidence of $X(3872) \rightarrow J/\psi \omega$ in the m(3 π) analysis window for ω .

$$\frac{BR(B^0 \to Y K^0) \times BR(Y \to J/\psi \omega)}{BR(B^+ \to Y K^+) \times BR(Y \to J/\psi \omega)} = 0.30^{+0.29} + 0.04_{-0.01} < 0.79,95\% \text{ C.L.}$$

• Study of $e^+e^- \rightarrow J/\psi X$ and $\gamma\gamma \rightarrow DD$ by *BABAR* in progress: results awaited soon.

Study of $e^+e^- \rightarrow J/\psi D^{(*)}D^{(*)}$

How to Improve on XYZ(3940)

- At least some of these may be ordinary charmonia:
 - Important to test against expectations for this hypothesis.
- Z(3930) is consistent with $\chi_{c2}(2P)$.
- Where are the missing $\chi_{cJ}(2P)$ states?
 - Y(3940) might be $\chi_{cl}(2P)$?
 - mass not far from expectations, especially in the case of BABAR;
 - $J/\psi \omega$ is rather large (~10%): main decays should be $DD^* \rightarrow$ important to set bounds on this.
 - The threshold enhancement seen by Belle in $e^+e^- \rightarrow J/\psi D\overline{D}$ could be $\chi_{c0}(2P)$?
- X(3940) might be consistent with an $\eta_c(nS)$
 - BR(*DD**)>45%
 - But... somewhat large splitting with $\psi(3S)$
- Yet a new state to place X(4160): another $\eta_c(nS)$???
- Important to confirm these states, to reduce uncertainty on mass (exp. Y(3940)), establish all J^{PC} quantum numbers
 - Important role of $DD^{(*)}$ modes: require large statistics.

New *J^{PC}* = 1⁻⁻ States

Confirmation + $J/\psi \pi^0 \pi^0$; also $J/\psi KK$ CLEO PRD74, 091104 (2006) CLEO PRL 96, 162003 (2006)

How to Improve on 1-Y States

- Not necessarily all belong to the same family
- Little space for ordinary charmonium assignements (1⁻ slots all taken)
 - May Y(4008) be $\psi(4040)$?
- Unlikely molecules and threshold effects.
- Important to search for partners of these states:
 - In the hybrid scenario, the 1⁻⁻ state should be degenarate with $0^{-+}, 1^{-+}, 2^{-+}$ states
- So far only seen to decay to $\psi(`)$ PP:
 - important to measure branching fractions;
 - important to search for other decay modes: no hints in $p\overline{p}$, $D\overline{D}$, $D\overline{D}^*$, $D^*\overline{D}^*$, $D\overline{D}\pi$
- So far observed in ISR
 - Y(4260) also in e^+e^- at CLEO;
 - A hint of Y(4260) in *B* decays: important to confirm and measure branching fraction. Can help distinguish models.

Not Forgetting to Look Somewhere Else

S. Olsen, Joint BES-Belle-CLEO-BABAR workshop

Process	N_s	Σ	Eff.(%)	$\sigma(\mathrm{pb})$	$\mathcal{B}(\%)$	$\Gamma(MeV)$
$\Upsilon(1S)\pi^+\pi^-$	325^{+20}_{-19}	20σ	37.4	$1.61 \pm 0.10 \pm 0.12$	$0.53 \pm 0.03 \pm 0.05$	$0.59 \pm 0.04 \pm 0.09$
$\Upsilon(2S)\pi^+\pi^-$	186 ± 15	14σ	18.9	$2.35 \pm 0.19 \pm 0.32$	$0.78 \pm 0.06 \pm 0.11$	$0.85 \pm 0.07 \pm 0.16$
$\Upsilon(3S)\pi^+\pi^-$	$10.5^{+4.0}_{-3.3}$	3.2σ	1.5	$1.44^{+0.55}_{-0.45}\pm0.19$	$0.48^{+0.18}_{-0.15}\pm0.07$	$0.52^{+0.20}_{-0.17} \pm 0.10$
N.B. Resonance	e cross secti	on 0.: PF	302 ± 0.0 ⁷ RD 98, 05	15 nb at 10.87 GeV 2001 (2007) [Belle]	>100 t	imes bigger‼
Also X(2175)	$\to \Phi f_0$				$\Upsilon(2S) \rightarrow \Upsilon(2S)$	1S)π ⁺ π [−] ~ 6 keV
(qu)					Υ(3S) Υ(4S)	0.9 keV 1.8 keV
	2.2 2.4	2.6		EVENTS(20000/C2) BALENDER BALE	BES A tetraq Y(5S)? (parts of Y(4260) ? uark near the Or the 5S itself?!

Z(4430)[±]

- What about $J/\psi \pi^{\pm}$?
- There must be isospin partners: important to search for $\psi \pi^0$

Summary and Conclusions

• Very large number of new results on $c\overline{c}$ states with constant improvement of the properties

- And yet new states are being reported! New spectroscopies unveiled?

• Important not only to find more states but to help classify them: *B*-Factories with large statistics are an ideal laboratory.

An exercise, not to be taken too seriously...

Backup Slides

The **BABAR** Experiment

The BES Experiment

L ~ 5 ×10³⁰ /cm²·s at J/ψ E_{beam}~ 1 - 2.5 GeV

The CLEO-c Experiment

e+e- collisions at √s ~ 4 GeV

• CLEO-c has collected the following data: - 572 pb⁻¹ on the $\psi(3770)$ - about 27 million $\psi(2S)$ decays - 21 pb⁻¹ of continuum below the $\psi(2S)$ - 47 pb⁻¹ of scan data near $E_{cm} = 4170$ MeV - 13 pb⁻¹ of data at $E_{cm} = 4260$ MeV - 314 pb⁻¹ of data at $E_{cm} = 4170$ MeV for D_s

physics

– December 2007: resume data taking at $E_{cm} = 4170 \text{ MeV}$

Search for $Y \rightarrow D^{(*)}\overline{D}^{(*)}$ Decays

• Can these new 1⁻⁻ states be seen in $D^{(*)}\overline{D^{(*)}}$ decays?

Model of Dubynskiy – Voloshin: Mod.Phys.Lett. A21, 2779 (2006)

Need interference with a narrow resonance at D^*D^* threshold