Tau Physics Experimental Overview

Alberto Lusiani INFN and Scuola Normale Superiore Pisa

SuperB Workshop VI New Physics at the Super Flavour Factory SuperB January 7-15th, 2008 (IFIC-Valencia)

Outline

Tau physics topics in SuperB CDR

LFV Decays

- SuperB golden channels, esp. $\tau \rightarrow \mu \gamma$
- experimental physics reach from basic extrapolation of B-factories results

CPV in tau decay

- analysis methods described
 - also relying on polarized beams
- no estimate of experimental precision
- can test multi-Higgs doublets NP

Tau EDM

- exp. UL estimate from hep-ph/0610135
 - using polarized beams
- not accessible with "standard" NP
- however, can set model ind. limits

Charged Current Universality Measurements

- now limited by leptonic BF and tau lifetime
- non trivial measurements at B-factories
- Iimited improvements expected
- in itself, not a physics case for SuperB

CPT test on tau lifetime

- BABAR prelim. result in 2004
- interesting precision if extrapolated to SuperB
- no evident serious systematic limitation

needs studies on limiting systematics

CPT test on tau mass

- Belle 2006 result
- not promising because of syst. limitations

Anticipations on review committee questions on CDR

- compare physics reach LHCb vs. SuperKeKB with 15 ab⁻¹ vs. SuperB with 75 ab⁻¹
 for a few tau golden channels:
 - LFV decays
 - CPV and T-odd observables in tau decay

Polarized beams, tau polarization

- tau spins and tau spins correlations
 - provide valuable physics information
 - may be exploited to improve selection of signal events (e.g. LFV events)
- polarized beams enhance spin effects and allow measurements otherwise unaccesible
- must assess physics gains from polarized beams to provide useful feedback for machine design

LFV decays in CDR

assume same analysis as B-factories but:

- ▶ for $\tau \to \ell \gamma$, assume all BKG but irreducible $\tau \to \ell \nu \nu \gamma$ (ISR) can be suppressed
- ▶ for $\tau \to 3\ell$, $\tau \to \ell h$ assume analysis can be BKG free up to SuperB

SuperB 75 ab ⁻¹ expected 90% CL ULs				
	Process	Sensitivity		
	$BF(\tau \to \ell \gamma)$	2×10^{-9}		
	$BF(au o 3\ell)$	$1 - 3 \times 10^{-10}$		
	$BF(au o \ell\eta)$	$4-6 \times 10^{-10}$		
	$BF(\tau \to \ell K^0_S)$	2×10^{-10}		

LFV decays updates and plans

- ♦ Belle paper on 535 fb⁻¹ τ→ 3ℓ search
 → no BKG until 7-50 ab⁻¹ for all channels but *eee* even without improving the analysis
 ♦ work done to improve BABAR τ→ μγ analysis with also SuperB in mind
 ▶ see S.Banerjee talk in LFV parallel session
 ▶ plans:
 study use of tau polarization to improve τ → μγ selection (sponsored by M.Giorgi)
 also, study use of tau polarization to characterize LFV interaction
 - properly simulate tau polarization and spin correlations
 - · KK & Tauola claim can simulate spin effects (practicalities being investigated)
- baseline: going from 15 to 75 ab^{-1} will at least improve LFV ULs by $\sqrt{75/15}$
 - if analysis BKG free, then improvement is 75/15
 - if detector and/or analysis improve, UL improve even > 100× w.r.t. B-factories

T/CP-odd observables in tau decay in CDR

CPV asymmetry in τ → Kπ⁰ν via H – W interference
can be measured on two structure functions W_{SF}[τ[±]] and W_{SG}[τ[±]] [Kuehn Z. Phys. C 56, 661 (1992)]
ΔW_{SF} is obtained from an analysis of the difference in the correlated energy distribution of the charged K and π⁰ in τ⁺ and τ⁻ decays in the LAB
ΔW_{SG} can be extracted from T-odd observable P^τ_Z · (p^τ_{K+} × p^τ_π) where P^τ_Z is the component of the τ polarization along the beam axis averaged over the production angle
beam polarization crucial in other channels like τ⁻ → a⁻₁π⁰ν_τ (Datta 2006 arXiv:hep-ph/0610162)
no estimate of experimental reach

Plans

- estimate experimental reach on simulated events or toy MC
 - one prerequisite is correct simulation of tau spin effects including $\tau^+\tau^-$ correlation

Tau EDM and (g-2) in CDR

- EDM: no measurable effect with "standard" NP models, given existing e, μ constraints
- ♦ g 2 not considered

Tau EDM and (g-2) updates and plans

- ♦ J.Bernabeu et al. papers on tau EDM & g 2 arXiv:0707.1658v1 [hep-ph] Tau electric dipole moment with polarized beams arXiv:0707.2496v1 [hep-ph] Tau anomalous magnetic moment form factor at Super B/Flavor factories
- can set limits on coefficients of model independent effective theory
- work done to refine exp. reach estimate on $(g 2)_{\tau}$ (A.Cervelli in parallel session)
- several measurements using polarized beams suggested
 - again, one prerequisite is correct simulation of tau spin effects including $\tau^+\tau^-$ correlation

Conclusions

- will discuss with Charm WG about running around 4 GeV
 - expect no real interest for considered channels
- will discuss with Spectroscopy WG on $H \rightarrow \tau^+ \tau^-$
 - ► tau spin correlations measurement can determine Higgs parity
- improve estimates of experimental reach on tau LFV
- produce estimates of experimental reach on CP-odd observables in tau decay
- refine estimates of experimental reach on tau EDM, g-2
- undertand better benefits of polarized beams

Backup slides

Progress on $\tau \rightarrow \mu \gamma$ since pre-B-factory era

SUSY SO(10) + seesaw – Masiero et al., NJP 6 (2004) 202

preliminary

B-Factories LFV limits

	Belle		BAB	AR
	UL90	Lumi	UL90	Lumi
	(10 ⁻⁷)	(fb ⁻¹)	(10 ⁻⁷)	(fb ⁻¹)
$\mu\gamma$	0.5*	535	0.7	232
eγ	1.2*	535	1.1	232
$\mu\eta$	0.65	401	1.5	339
$\mu\eta'$	1.3	401	1.3	339
eη	0.92	401	1.6	339
$e\eta'$	1.6	401	2.4	339
$\mu\pi^0$	1.2	401	1.5	339
$e\pi^0$	0.8	401	1.3	339
lll	0.2–0.4	535	0.4–0.8	376
ℓhh'	2–16	158	1–5	221
μV^0	1.0–1.5	543	1.1*	384
eV^0	0.8–1.9	543	1.0*	384

	Belle		BABAR	
	UL90	Lumi	UL90	Lumi
	(10 ⁻⁷)	(fb ⁻¹)	(10 ⁻⁷)	(fb ⁻¹)
μK _S	0.49	281	in progre	ess
eK _S	0.56	281	in progre	ess
$\Lambda \pi, \overline{\Lambda} \pi$	0.72–1.4	154	0.58-0.59*	237
$\Lambda K, \overline{\Lambda} K$			0.72–1.5*	237
$\sigma_{\ell au}/\sigma_{\mu \mu}$			40–89	211

(* preliminary)

$$V^0 = \omega$$
 for BABAR, $V^0 = \rho, \phi, \vec{K^{*0}}$ for Belle

LFV Searches Prospects

- B-factories improved LFV tau BF limits by factor 10–100
 - ▶ whenever BKG O(1) at constant efficiency, upper limits improve $\propto \mathcal{L}$ (channels with only charged tracks tend to be in this regime right now)
 - otherwise (BKG limited) upper limits improve $\propto \sqrt{\mathcal{L}}$ (channels with photons, e.g. $\tau \rightarrow \mu \gamma$, appear to be entering this regime now)
- limits can improve by factor 2-4 analyzing all planned B-Factories yield (2 ab^{-1})
- Super B-Factories expected to improve LFV limits again by factor 10–100 must care about:
 - detector hermeticity
 - resolution on neutral energy / angle

Lepton Universality Tests

Standard Model (SM) predicts that leptons have same weak charged current couplings

• B-Factories can measure **several relatively less known ingredients** for LU tests below

$$\frac{\Gamma_{\tau \to e}}{\Gamma_{\mu \to e}} \propto \left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \mathsf{BF}(\tau^{-} \to e^{-}\overline{\nu_{e}}\nu_{\tau}) \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{f(m_{e}^{2}/m_{\mu}^{2})r_{EW}^{\mu}}{f(m_{e}^{2}/m_{\tau}^{2})r_{EW}^{\tau}}$$

$$\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\mu \to e}} \propto \left(\frac{g_{\tau}}{g_{e}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \mathsf{BF}(\tau^{-} \to \mu^{-}\overline{\nu_{\mu}}\nu_{\tau}) \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{f(m_{e}^{2}/m_{\mu}^{2})r_{EW}^{\mu}}{f(m_{\mu}^{2}/m_{\tau}^{2})r_{EW}^{\tau}}$$

$$\frac{\Gamma_{\tau \to e}}{\Gamma_{\tau \to \mu}} \propto \left(\frac{g_{e}}{g_{\mu}}\right)^{2} = \frac{\mathsf{BF}(\tau^{-} \to e^{-}\overline{\nu_{\mu}}\nu_{\tau})}{\mathsf{BF}(\tau^{-} \to \mu^{-}\overline{\nu_{\mu}}\nu_{\tau})} \frac{f(m_{\mu}^{2}/m_{\tau}^{2})}{f(m_{e}^{2}/m_{\tau}^{2})}$$

$$f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x \ln x \quad \text{(approximating all } m_{\nu} = 0)$$

$$r_{EW}^{\ell} = 0.9960 \quad \text{(EW radiative corrections, Marciano-Sirlin)}$$

Lepton Universality Tests (A.Pich, SuperB Workshop, Paris, May 2007)

Tau mass experimental results

$m_{\tau} = (1776.96^{+0.18}_{-0.21}^{+25}) \text{ MeV}$	BES 1996
$m_{ au} = (1776.61 \pm 0.13 \pm 0.35) \mathrm{MeV}$	Belle 2006, 414 fb ⁻¹
$m_{ au} = (1776.80^{+0.25}_{-0.22} \pm 0.15) \mathrm{MeV}$	KEDR 2006

Tau lifetime experimental results

CPT test on tau lifetime from BABAR $\Delta_{\text{STAT}} \left(\frac{\tau_{\tau^{-}} - \tau_{\tau^{+}}}{\tau_{\tau^{-}} + \tau_{\tau^{+}}} \right) = 0.32\%$

Prospects on Lepton Universality Tests at B-Factories

