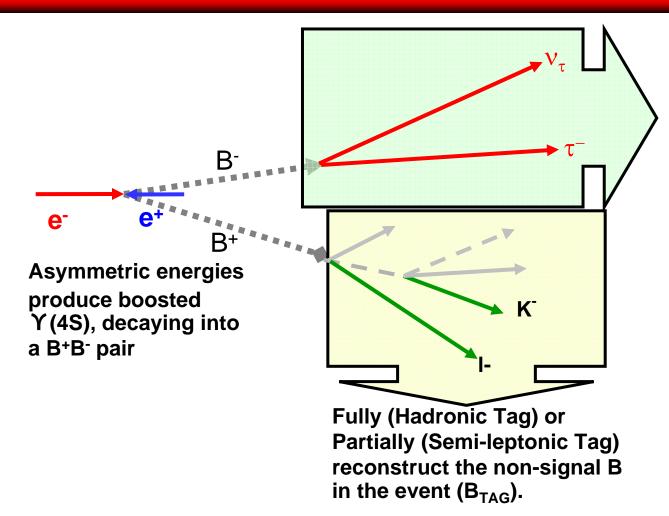
$B^+ \rightarrow I^+ \nu(\gamma)$ at SuperB

Elisabetta Baracchini¹ Adrian Bevan² Luca Cavoto¹

8th January 2008, SuperB Workshop VI, IFIC, Valencía



¹Univ. Di Roma 'La Sapienza' and INFN, Sezione Di Roma I ²Queen Mary University of London

Outline

- Current Measurements
- CDR Prediction
- Physics issues
- Detector issues
- Other remarks

Reconstructing an event

Reconstruct signal via the decay products of the τ lepton from the rest of the event (B_{SIG})

Tag efficiency ~ few per mille.

Hadronic Tag

• B_{TAG}: $\mathcal{E}(B_{TAG}) = 0.15\%$ $B^+ \to \overline{D}^{(*)0}\pi^+, \overline{D}^{(*)0}\rho^+, \overline{D}^{(*)0}a_1^+, \overline{D}^{(*)0}\overline{D}_s^{(*)+} + \dots$ • $\mathsf{B}_{\mathsf{SIG}}$: $\tau^- \to \mu^- \overline{\nu}_\mu v_\tau$ $\rightarrow e^{-} \overline{\nu}_{\mu} \nu_{\tau}$ $\rightarrow \pi^{-} \nu_{\tau}$ 81% of τ 71% of τ Decays decays $[3\pi \text{ mode only used}]$ by Belle; and is low $\rightarrow \pi^{-}\pi^{0}V_{\tau}$ purity] $\rightarrow \pi^{-}\pi^{+}\pi^{-}\nu_{-}$

Semileptonic Tag

$$B_{\mathsf{TAG}} : \qquad B^- \to D^0 l^- \nu X \qquad \varepsilon(B_{TAG}) = 0.066\%$$

• X = nothing, π^0 or γ

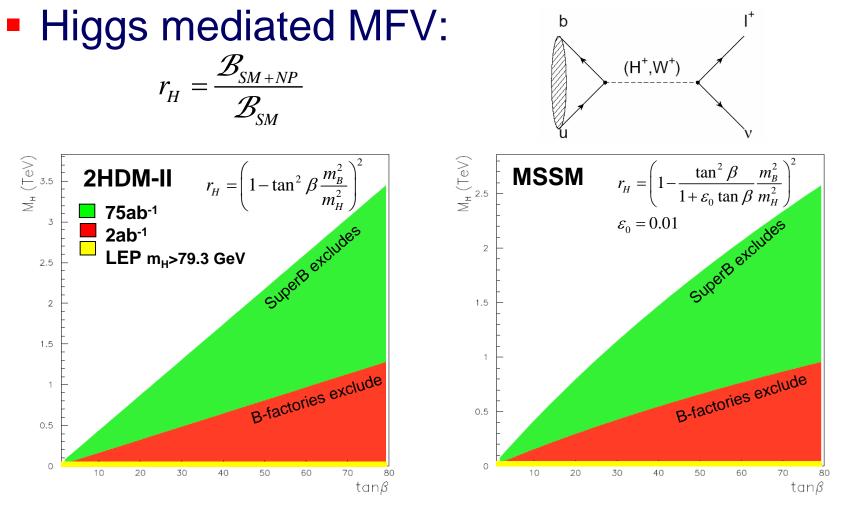
$$\begin{array}{c|c} \mathbf{B}_{\mathrm{SIG}}: \tau^{-} \to \mu^{-} \overline{\nu}_{\mu} \nu_{\tau} \\ \to e^{-} \overline{\nu}_{\mu} \nu_{\tau} \\ \to \pi^{-} \nu_{\tau} \\ \to \pi^{-} \pi^{0} \nu_{\tau} \end{array}$$

′1% of τ decays

Current Measurements

- Hadronic Tag:
 - Belle : τ⁺ν PRL 97 251802 (2006)
 - BaBar : τ⁺ν arXiv:0708.2260 [Submitted to PRD-RC] other modes being worked on.
- Semileptonic Tag:

Babar: τ⁺ν arXiv:0705.1820 [Submitted to PRD]


Experiment	Tag	Data Sample (fb^{-1})	Result	Significance
$B^+ \to \tau^+ \nu$				
Belle	Hadronic	414	$ \begin{array}{c} (1.79^{+0.56}_{-0.49} {}^{+0.46}_{-0.51}) \times 10^{-4} \\ (1.8^{+0.9}_{-0.8} \pm 0.4) \times 10^{-4} \end{array} $	3.5σ
BaBar	Hadronic	346	$(1.8^{+0.9}_{-0.8} \pm 0.4) \times 10^{-4}$	2.2σ
	SL	346	$(0.9 \pm 0.6 \pm 0.1) \times 10^{-4}$	_
$B^+ o \mu^+ u$				
Belle		140	$< 2 \times 10^{-6}$	—
$B^+ \to e^+ \nu$				
Work in progress.				

• c.f. SM expectation of O(10⁻⁴, 10⁻⁵, 10⁻⁹), for τ , μ , and e modes which depends on $|V_{ub}|$ and f_B $\mathcal{B}(B^+ \to \ell^+ \nu) = \frac{G_F^2}{8\pi} f_B^2 |V_{ub}|^2 \tau_{B^+} M_{B^+} m_\ell^2 \left(1 - \frac{m_\ell^2}{M_{B^+}^2}\right)^2$

CDR Prediction: $\tau^+\nu$

- "Realistic predictions require detailed knowledge of the calorimeter response, and of beam-backgrounds".
- Statistical error will be 3-4% with 75 ab⁻¹.
- Must control the systematic uncertainties better than current measurements (~10%). CDR estimate was that this could be reduced to 4% through:
 - Better understanding of backgrounds: control studies of modes like B→D^(*)Iv.
 - Improved detector performance (better K⁰_L coverage, improved calorimeter coverage/resolution).
 - Lower boost : gives better solid angle coverage to understand backgrounds.

NP & B⁺ $\rightarrow \tau^+ \nu$

Multi TeV search capability for large tanβ.

8

CDR Prediction: $\mu^+\nu$, $e^+\nu$ (+ γ)

- Need good lepton and photon identification: IFR and EMC performance.
 - $\mu^+\nu$: clean with $\mathcal{B} \sim 5 \times 10^{-7}$.
 - Aiming for a 5% (stat) measurement with similar systematic uncertainty.
 - e^+v : expected $\mathcal{B} \sim 10^{-9}$.
 - $I^+\nu\gamma$: not helicity suppressed, useful to improve understanding of hadronic branching fraction calculations for decays like $B \rightarrow \pi\pi$.
 - Expected $\mathcal{B} \sim 10^{-6}$

- Understanding of a₁ line-shape for improved control of Hadronic tag?
 - What is reconstructed as D*⁰a₁+ (as the cuts let in more than just a₁)?
 - a_1 width varies from 230 to 521 MeV in the PDG.
 - Analyses cut at 300 MeV when selecting the B_{Tag} mode D*0a₁+.

• Other similar mass particles have the same final state and can interfere [e.g. a_2 , $\pi(1300)$].

- Understanding of a₁ line-shape for improved control of Hadronic tag?
 - What is reconstructed as D*⁰a₁+ (as the cuts let in more than just a₁)?
 - a_1 width varies from 230 to 521 MeV in the PDG.
 - Analyses cut at 300 MeV when selecting the B_{Tag} mode D*0a₁+.

• Other similar mass particles have the same final state and can interfere [e.g. a_2 , $\pi(1300)$].

 Improving experimental constraints on the other tag side decays.

- Understanding of a₁ line-shape for improved control of Hadronic tag?
 - What is reconstructed as D*0a₁+ (as the cuts let in more than just a₁)?
 - a_1 width varies from 230 to 521 MeV in the PDG.
 - Analyses cut at 300 MeV when selecting the B_{Tag} mode D*0a₁+.

• Other similar mass particles have the same final state and can interfere [e.g. a_2 , $\pi(1300)$].

- Improving experimental constraints on the other tag side decays.
- NP exclusion vs. NP discovery plot!
 - We want to compare our discovery potential to the LHC discovery potential.

- Understanding of a₁ line-shape for improved control of Hadronic tag?
 - What is reconstructed as D*0a1+ (as the cuts let in more than just a1)?
 - a_1 width varies from 230 to 521 MeV in the PDG.
 - Analyses cut at 300 MeV when selecting the B_{Tag} mode D*0a₁+.

• Other similar mass particles have the same final state and can interfere [e.g. a_2 , $\pi(1300)$].

- Improving experimental constraints on the other tag side decays.
- NP exclusion vs. NP discovery plot!
 - We want to compare our discovery potential to the LHC discovery potential.
- ... expand analysis to multi-dimensional fit?

Detector Issues

- Current systematic errors related to the detector are:
 - PID : 2% (2-6% for Belle)
 - π⁰
 1.4 (3% for Belle)
 - Tracking : 5.8% (1-3% for Belle)
- How does this channel benefit from:
 - Improved μ/K_{L}^{0} efficiency.
 - Improved calorimeter performance/hermiticity.
 - Improved PID performance/hermiticity.
- SuperB beam background conditions?

Detector Issues

- Ithe result of discussion with Steve Robertson after lunch this afternoon]
- How well will we understand the material in the SuperB detector?
 - Need a flexible simulation designed so that we can change the geometry to easily account for 'forgotten' material.
 - In the early days of SuperB data taking we need to be able to tune physics process simulation in Geant4 so that it is realistic: e.g.
 - See the shower shape variable data/MC comparison in BaBar is not perfect even now. This has serious ramifications on how we perform an analysis like $B^+ \rightarrow l^+ v$. Ideally want an accurate MC so that we minimise correction factors [scales & shifts] to any distributions we need to rely on when extracting signals. 15

Other remarks

- Fast simulation can be used to make quick estimates of performance.
- SuperB simulation required to thoroughly test analysis.
 - Flexible enough to tune early in the experiments lifetime, with a good understanding of material in the inner part of the detector and between crystals/modules in the Calorimeter.
- Better understanding of tag side efficiency needs coordinated effort (best started at BaBar and Belle)
 - Better under standing of branching fractions, and other analysis factors like line-shapes that may affect efficiency determination.
- Better understanding of τ decay branching fractions?