Impact of B Physics on the NMSSM.¹

Florian Domingo Laboratoire de Physique Théorique – Orsay

in collaboration with Ulrich Ellwanger

Super B Meeting - Valencia

January,10th 2008

¹F. Domingo and U. Ellwanger, JHEP12(2007)090, arXiv:0710.3714 [hep-ph].

Outline

1 Present Status of B Observables

- 2 What is the NMSSM?
- 3 Computation of B observables
- I Remarks on the Behaviour of $BR(\bar{B} \to X_s \gamma)$
- **5** B constraints on the Parameter Space of the NMSSM

Recent Experimental and SM Achievements on B Physics Observables

$BR(B \rightarrow X_s \gamma)$

Status until 2005:

 $BR(B \to X_s \gamma)|_{E_{\gamma}>1.6 \, GeV}^{exp.} = (3.23 \pm 0.42) \cdot 10^{-4}$ Exp. World Average, 2001 $BR(B \to X_s \gamma)|_{E_{\gamma}>1.6 \, GeV}^{NO} = (3.61 \pm 0.5) \cdot 10^{-4}$ SM NLO prediction, [*Hurth et al.*, 2005]

Present situation:

 $\begin{array}{l} BR(B \to X_s \gamma)|_{E_{\gamma} > 1.6 \ GeV}^{exp.} = \left(3.55 \pm 0.24^{+0.09}_{-0.10} \pm 0.03\right) \cdot 10^{-4} \quad \text{Exp. World Average, 2005} \\ BR(B \to X_s \gamma)|_{E_{\gamma} > 1.6 \ GeV}^{NNLO} = \left(3.15 \pm 0.23\right) \cdot 10^{-4} \quad \text{SM NNLO, } [Misiak \ et \ al., 2006] \\ BR(B \to X_s \gamma)|_{E_{\gamma} > 1.6 \ GeV}^{NNLO} = \left(2.98 \pm 0.26\right) \cdot 10^{-4} \quad \text{SM NNLO, } [Becher, Neubert, 2006] \\ (using \ an improved \ treatment \ of \ the \ photon \ energy \ cutoff) \end{array}$

$$\Delta M_d = M_{B_d} - M_{\bar{B}_d}, \ \Delta M_s = M_{B_s} - M_{\bar{B}_s}$$
• ΔM_d :
• ΔM_d :
• $\Delta M_d^{exp} = (0.507 \pm 0.004) .ps^{-1}$ HFAG, 2005
• $\Delta M_d^{SM} = (0.59 \pm 0.19) .ps^{-1}$ SM prediction
• ΔM_s :
• $\Delta M_s^{exp} = (17.77 \pm 0.12) .ps^{-1}$ CDF, 2006
• $\Delta M_s^{SM} = (20.5 \pm 3.1) .ps^{-1}$ SM prediction

$$BR(\bar{B}_s \to \mu^+ \mu^-)$$

$$\begin{split} & BR(\bar{B}_s \to \mu^+ \mu^-) \Big|_{exp} < 5.8 \times 10^{-8} \ (95\% C.L.) & \text{CDF, 2007} \\ & BR(\bar{B}_s \to \mu^+ \mu^-) \Big|_{SM} = (3.8 \pm 0.1) \times 10^{-9} \quad [Dedes \ et \ al., 2002] \end{split}$$

$BR(\bar{B}^+ \to \tau^+ \nu_{\tau})$

$$\begin{split} & BR(\bar{B}^+ \to \tau^+ \nu_\tau) \Big|_{exp.} = (1.32 \pm 0.49) \, .10^{-4} & \text{HFAG}, \, 2005 \\ & BR(\bar{B}^+ \to \tau^+ \nu_\tau) \Big|_{SM} & \text{from } (0.85 \pm 0.13) \, .10^{-4} & [Carena \ et \ al., \, 2007] & |V_{ub}|_{excl.} \sim 3.7 \times 10^{-3} \\ & \text{to } (1.59 \pm 0.40) \, .10^{-4} & [Isidori, \ Paradisi, \, 2006] & |V_{ub}|_{incl.} \sim 4.4 \times 10^{-3} \end{split}$$

Outline

Present Status of B Observables

- 3 Computation of B observables
- I Remarks on the Behaviour of $BR(\bar{B} \to X_s \gamma)$
- **5** B constraints on the Parameter Space of the NMSSM

Supersymmetry (SUSY) at Low Energy (TeV Scale)

Supersymmetry Relates Fermions and Bosons (N=1)

- Chiral superfields (matter) $\rightarrow 1$ Complex Scalar Field (A) + 1 Weyl Spinor (ψ): $\hat{\Phi} \supset \begin{pmatrix} A \\ \psi \end{pmatrix}$; $\hat{\Phi}^+ \supset \begin{pmatrix} A^+ \\ \bar{\psi} \end{pmatrix}$
- Vector Superfields (gauge) $\rightarrow 1$ Weyl spinor (λ) + 1 Vector Field (A^{μ}): $\hat{V} \supset \begin{pmatrix} \lambda \\ A^{\mu} \end{pmatrix}$

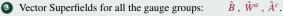
 \Rightarrow

Physics Beyond the Standard Model (SM) at the TeV Scale

- Hierarchy Problem
- Unification of Gauge Couplings
- Dark Matter

• ...

Low Energy SUSY answers many of these questions. BUT: It must be broken near the EW Scale.


Minimal Supersymmetric Models: MSSM and NMSSM

Minimal SuperSymmetric Model (MSSM)

- Global SUSY (N=1) + R-Parity + Gauge Group $SU(3)_c \times SU(2)_L \times U(1)_Y$;
- Minimal Supersymmetric matter content for SM particles:
 - 1 Three Families of Lepton/Quark Superfields:

$$\hat{L}_L = \begin{pmatrix} \hat{v}_L \\ \hat{E}_L \end{pmatrix}, \hat{E}_R^c, \ \hat{Q}_L = \begin{pmatrix} \hat{U}_L \\ \hat{D}_L \end{pmatrix}, \hat{U}_R^c, \ \hat{D}_R^c$$

Two Higgs Doublets (Superfields): \hat{H}_u , \hat{H}_d coupling respectively to u-like fields and d-like fields; Electroweak Symmetry Breaking \Rightarrow v.e.v.'s v_u , $v_d \rightarrow$ parameter tan $\beta \equiv \frac{v_u}{v_d}$.

- Superpotential: $W = \mu \hat{H}_u \cdot \hat{H}_d + Y_u \hat{Q}_L \cdot \hat{H}_u \hat{U}_p^c Y_d \hat{Q}_L \cdot \hat{H}_d \hat{D}_p^c Y_e \hat{L}_L \cdot \hat{H}_d \hat{E}_p^c$
- Soft SUSY Breaking terms...

<u>*µ*-problem:</u> a Naturalness Problem of the MSSM

- μ : SUSY parameter \rightarrow Natural Scale: $O(M_{\text{Planck, GUT, ...}})$... or Zero!
- LEP Constraints on Chargino masses:
- Electroweak Symmetry Breaking needs:

 $\mu \ge 100 \, \text{GeV}$

 $\mu \leq M_{\rm SUSY}$

Next-to-Minimal SuperSymmetric Model (NMSSM)

- Additionnal Gauge-Singlet superfield Ŝ
- Superpotential (Z₃ symmetry): $W = \frac{\kappa}{2}\hat{S}^{3} + \lambda\hat{S}\hat{H}_{u}\hat{H}_{d} + Y_{u}\hat{Q}_{L}\hat{H}_{u}\hat{U}_{R}^{c} - Y_{d}\hat{Q}_{L}\hat{H}_{d}\hat{D}_{R}^{c} - Y_{e}\hat{L}_{L}\hat{H}_{d}\hat{E}_{R}^{c}$
- v.e.v. $\langle S \rangle = s \implies \mu_{eff} = \lambda s$ ۲
- + Soft terms...

Particle Content of the NMSSM:

- SM particles: quarks, leptons, gauge bosons;
- Extended Higgs Sector:

- 3 neutral scalars: h_1, h_2, h_3
 - 2 neutral pseudoscalars: $A_1, A_2;$ 1 charged scalar: H^{\pm} :
- SUSY particles:

- Sfermions: supersymmetric partners (scalar fields) of quarks and leptons;
- Charginos (charged fermions):
- Neutralinos (neutral fermions):
- χ_{12}^{\pm} χ_1^o 5
- Gluinos: supersymmetric partners of the gluons.

Phenomenological Advantages of the NMSSM...

The Decoupling Limit

 $\lambda \sim \kappa \rightarrow 0$: the singlet sector decouples

$$\Rightarrow \text{ Effective MSSM with:} \\ \mu_{eff} = \lambda s \sim M_{SUSY} \quad ; \quad B_{eff} = A_{\lambda} + \kappa s \sim M_{SUS} \end{cases}$$

Higgs Physics

• Tree Level Upper Bound on the Lightest Higgs Mass:

$$m_{h_1}^2 \leq M_Z^2 \left[\left(\frac{1 - \tan^2 \beta}{1 + \tan^2 \beta} \right)^2 + \frac{2\lambda^2}{g_1^2 + g_2^2} \frac{4 \tan^2 \beta}{(1 + \tan^2 \beta)^2} \right] \quad ; \quad \lambda(M_{GUT}) < \infty \Rightarrow \lambda(M_Z) \leq 0.7$$

NMSSM upper bound on the lightest Higgs mass: $m_{h_1} \leq 140 \text{ GeV}$ (reached at low tan β)

- Light Singlet Higgs Scalar: very weak coupling to SM particles ⇒ INVISIBLE!
 LHC: Lightest Doublet-like Higgs → can be 20 GeV heavier than above.
- Light Pseudoscalars A_1 : Decay $h_1 \rightarrow A_1A_1$ can be dominant

 $m_{h_1} \leq 90 \text{ GeV}$ can be consistent with LEP constraints!

CONCLUSION: the NMSSM can escape the Little Hierarchy Problem!

Dark Matter (Neutralino LSP)

New Possibilities compared to the MSSM...

NMSSM specific effects relative to B constraints with respect to the MSSM...

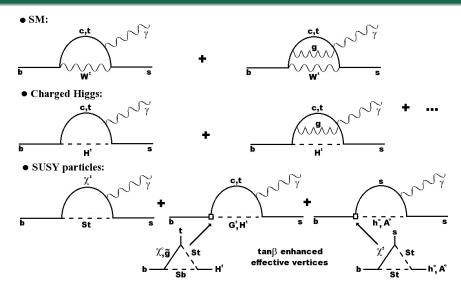
Peculiarities concerning B processes

- Extended Unconstrained Parameter Space: in the NMSSM, low values of tanβ (~ 1.5) are not excluded by LEP;
- Charged Higgs Mass: the NMSSM parameter λ gives a negative contribution to $M_{H^{\pm}}$, which allows for slight modulations on $\bar{B} \rightarrow X_s \gamma$;
- The effect of the extended neutralino sector is negligibly small;
- Light pseudoscalars (below 10 GeV) escape LEP constraints, but they are significantly constrained by ΔM_q and $BR(\bar{B}_s \to \mu^+ \mu^-)$.

Outline

- Present Status of B Observables
- 2 What is the NMSSM?
- **3** Computation of B observables
- I Remarks on the Behaviour of $BR(\bar{B} \to X_s \gamma)$
- 5 B constraints on the Parameter Space of the NMSSM

An Additional Assumption...


Minimal Flavour Violation

- We assume the only source of Flavor Violation is the Cabibbo–Kobayashi–Maskawa (CKM) matrix.
- Therefore: Quark and Squark mass matrices are simultaneously diagonalized.
- No Flavor Changing Gluino Couplings at Tree Level...

Squark mass matrices in the (SQ_R, SQ_L) base after CKM rotation:

$$M_{SQ}^{2} = \begin{pmatrix} * & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & * & 0 & 0 & 0 & 0 \\ 0 & 0 & * & 0 & 0 & * \\ 0 & 0 & 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 & * & 0 \\ 0 & 0 & * & 0 & 0 & * \end{pmatrix}$$

Contributions to $BR(b \rightarrow s\gamma)$

$BR(\bar{B} ightarrow X_s \gamma)$: Formalism [Gambino, Misiak, 2001]; [Hurth, Lunghi, Porod, 2005]

Formula derived in a low-energy Effective Theory (matching scale $\mu_o \equiv m_t$):

$$BR(\bar{B} \to X_s \gamma)\Big|_{E_{\gamma} > E_o} = \frac{6\alpha_{em}}{\pi C} \left|\frac{V_{ts}^* V_{tb}}{V_{cb}}\right|^2 BR(\bar{B} \to X_c e\bar{\nu}) \\ \times \left[\left|K_c + \frac{m_b(m_t)}{m_b^{1S}}\left(K_t + K_{BSM}\right) + \epsilon_{ew}\right|^2 + B(E_o) + N\right]$$

Quantities Involved:

- $K_c + \frac{m_b(m_t)}{m_b^{1S}} (K_t + K_{BSM})$: NLO QCD partonic amplitude for $b \to s\gamma$. Ambiguous dependence at NLO on $\frac{m_c}{m_b} = 0.23 + 0.08_{-0.05}^{+0.08}$: SM NNLO results reproduced for $\frac{m_c}{m_b} \simeq 0.307$;
- $BR(\bar{B} \to X_c e\bar{\nu})$: measured experimentally, $\simeq 0.1061$;

•
$$C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma(\bar{B} \to X_c e \bar{v})}{\Gamma(\bar{B} \to X_u e \bar{v})}$$
, calculable $\simeq 0.580$;

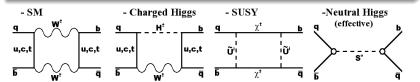
- N: Non-Perturbartive corrections (Heavy Quark Effective Theory) ~ \frac{\Lambda_{QCD}^2}{m_c^2} (+ higher orders);
- $B(E_o)$: (gluon) Bremsstrahlung corrections, depends on the lower limit E_o on the photonic energy E_{γ} . Here: $E_o = 1.6 \, GeV$;
- *ϵ_{ew}*: electroweak radiative corrections;

Calculation of ΔM_q , q = d, s

Formula for the Mass difference, [Buras et al., 2003]

$$\Delta M_q = \frac{G_F^2 M_W^2}{6\pi^2} M_{B_q} \eta_B f_{B_q}^2 \hat{B}_{B_q} \left| V_{tq}^* V_{tb} \right|^2 \left| F_{tt}^q \right|$$

with:

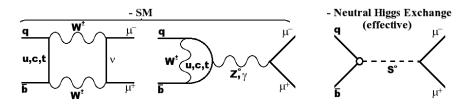

$$F_{tt}^{q} = S_{0}(x_{t}) + \frac{1}{4r} C_{new}^{VLL} + \bar{P}_{1}^{SLL} \left(C_{1}^{SLL} + C_{1}^{SRR} \right) + \bar{P}_{2}^{LR} C_{2}^{LR} + \dots$$

Parameters

• Hadronic parameters (lattice QCD):

$$f_{B_s} \sqrt{\hat{B}_{B_s}} = (0.281 \pm 0.021) \text{ GeV}$$
 [Dalgic et al., 2007
 $f_{B_s} \sqrt{\hat{B}_{B_s}}/f_{B_d} \sqrt{\hat{B}_{B_d}} = 1.216 \pm 0.041$ [Okamoto, 2006

• CKM, from Tree Level measurements [*Ball*,*Fleisher*, 2006]: $|V_{td}^*V_{tb}| = (8.6 \pm 1.4).10^{-3}$ $|V_{ts}^*V_{tb}| = (41.3 \pm 0.7).10^{-3}$

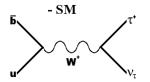

Branching Ratio $\bar{B}_s \rightarrow \mu^+ \mu^-$

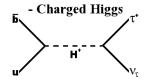
Formula [Bobeth et al., 2002]

$$BR(\bar{B}_{s} \to \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}M_{Bs}^{5}f_{Bs}^{2}\tau_{Bs}}{64\pi^{3}\sin^{4}\theta_{W}} \left|V_{tb}V_{ts}^{*}\right|^{2}\sqrt{1-4\frac{m_{\mu}^{2}}{m_{Bs}^{2}}} \left[\frac{1-4\frac{m_{\mu}^{2}}{M_{Bs}^{2}}}{\left(1+\frac{m_{s}}{m_{b}}\right)^{2}}\left|c_{S}\right|^{2} + \left|\frac{c_{P}}{1+\frac{m_{s}}{m_{b}}} + \frac{2m_{\mu}}{M_{Bs}^{2}}c_{A}\right|^{2}\right]$$

Effective coefficients

- SM contribution in c_A : 1 order of magnitude below the sensitivity of experiments;
- Effective Neutral Higgs contributions in c_S , c_P : enhanced for light scalars/large tan β .

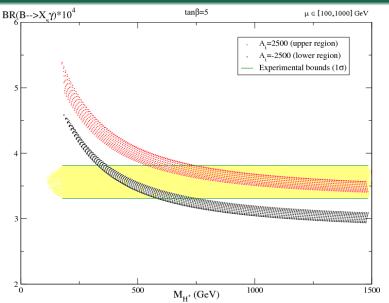

Branching ratio $\bar{B}^+ \rightarrow \tau^+ \nu_{\tau}$


Formula [Akeroyd, Recksiegel, 2003]

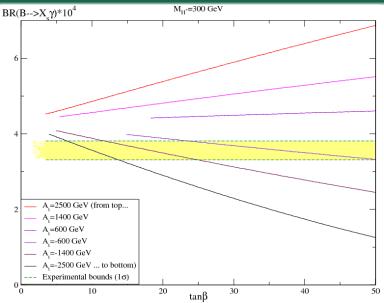
$$BR(\bar{B}^+ \to \tau^+ \nu_{\tau}) = \frac{G_F^2 M_B m_{\tau}^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{M_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B r_H$$
$$r_H = \left[1 - \left(\frac{M_B}{m_{H^\pm}}\right)^2 \frac{\tan^2 \beta}{1 + \hat{\epsilon}_0 \tan \beta}\right]^2$$

Parameters

- Hadronic parameter: $f_B = (0.216 \pm 0.022)$ GeV, HPQCD, 2005;
- CKM: large uncertainty; we take $|V_{ub}| = (4.0 \pm 0.35) \cdot 10^{-3}$.



Outline



- Present Status of B Observables
- 2 What is the NMSSM?
- 3 Computation of B observables
- **4** Remarks on the Behaviour of $BR(\bar{B} \rightarrow X_s \gamma)$
- **5** B constraints on the Parameter Space of the NMSSM

$BR(\bar{B} \to X_s \gamma)$ as a function of $M_{H^{\pm}}$

$BR(\bar{B} \to X_s \gamma)$ as a function of $\tan \beta$

Outline

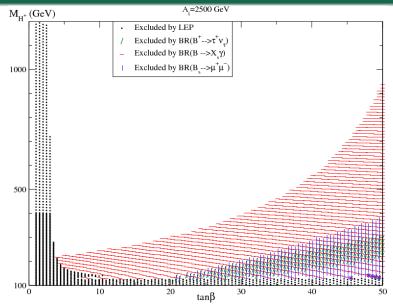
- Present Status of B Observables
- 2 What is the NMSSM?
- 3 Computation of B observables
- Bemarks on the Behaviour of $BR(\bar{B} \to X_s \gamma)$

B constraints on the Parameter Space of the NMSSM

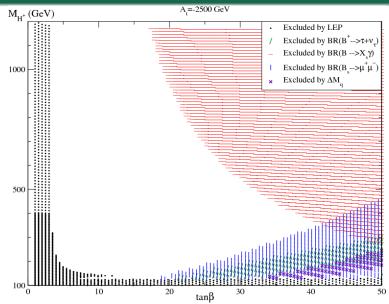
Warning!

Uncertainties

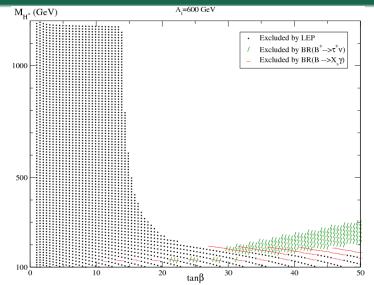
To study the relevance of B constraints on the parameter space of the NMSSM:

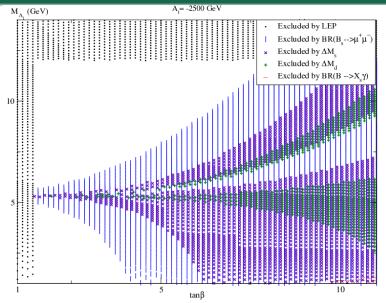

- Experimental error bars have been taken at the 2σ level (Branching Ratios, CKM elements, lattice parameters...);
- Theoretical uncertainties are added linearly.

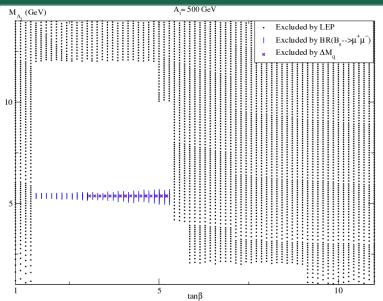
A Particular Limiting case: Universality


In the following plots, we chose to work with:

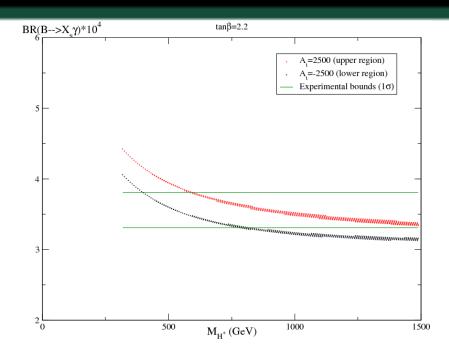
- Universal Squark/Slepton soft masses;
- Universal trilinear soft couplings: $A_t = A_b = A_{\tau}$;
- Hierarchical Gaugino (soft) masses (ratio 1-2-6).

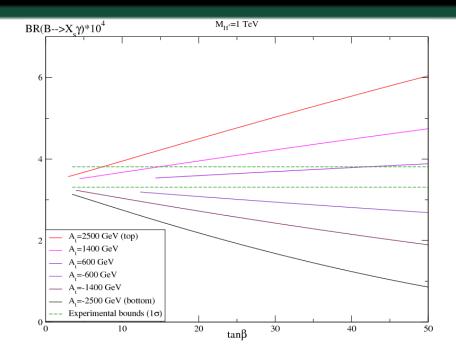

B constraints on the $(M_{H^+}, \tan\beta)$ plane


Playing SUSY against Charged Higgs Contribution


Low values of A_t: weaker B constraints vs enhanced LEP bounds

NMSSM Light Pseudoscalars


$\mathbf{Low} A_t$


Conclusions

- Constraints from $\overline{B} \to X_s \gamma$ are weaker than they used to be thanks to the recent improvements on the experimental side and the SM analysis.
- Still, very light (≤ 200 GeV) charged Higgs lead to difficulties for low tanβ. Domains with both large A_t and large tanβ are also strongly constrained.
- BR(B
 _s → μ⁺μ⁻) is the most sensitive observable depending on neutral Higgs scalar exchanges, provides us with significant constraints especially for light Higgs pseudoscalars.
- The Fortran code is added to the NMSSMTools package (and could also be used for the MSSM...). Such codes for the MSSM: FeynHiggs, Suspect, MicrOmegas, Spheno...

Present Status of B obs... What is the NMSSM? Computation of B obs... $BR(\bar{B} \to X_s \gamma)$: Behaviour B constraints on the Param. Sp.

Present Status of B obs... What is the NMSSM? Computation of B obs... $BR(\bar{B} \to X_s \gamma)$: Behaviour B constraints on the Param. Sp.

