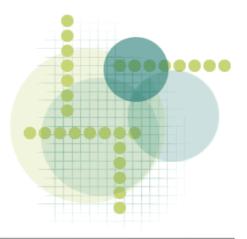
summary of CMS simulation tools

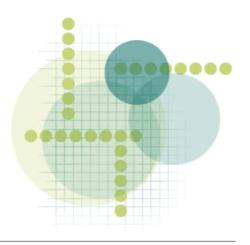

M. Morandin - INFN Padova

CMS simulation

[from conversation with P.Azzi (coord. fast sim.) and F. Cossutti (coordinator full sim.)]

- three approaches in a unified framework:
 - detailed simulation in Geant4
 - currently in use
 - fast simulation, no Geant4
 - currently under validation tests
 - O(1000) speed factor
 - fast simulation in Geant4
 - ideas for the future, O(100) speed improvement

Geant4


- geometry (+ other simulation parameters) in XML file
 - C++ code complements the description of the geometry obtained from the XML file
 - planning to move to GDML; have to define a way of specifying additional parameters now not foreseen in GDML
 - planning to introduce a Condition Database: versioning of various detector configurations is getting unmanageable

Fast Simulation (I)

- rather ambitious goal: aiming for the same level of accuracy of the detailed simulation!
 - with parametrization taken from the latter
- integrated with the full simulation framework
 - same geometry description
 - same objects produced in output (sim. hits, reco hits.)
- material effects included:
 - Bremsstrahlung, photon conversion, mult. scattering, energy loss, in-flight decays, nucl. interac. (1.5 Mevents sample)

Fast Simulation (II)

- fast reconstruction provides tracks from hits using MC truth information
 - pattern recognition emulation
 - no fake tracks (not felt to be a big problem at the moment)
 - inefficiencies due to BG are handled
- showers simulated with a GFlash approach
- more details: http://indico.cern.ch/contributionDisplay.py? contribId=21&sessionId=11&confId=16956

Fast Simulation in Geant4

- tracking stays the same
- shower simulation provided by GFlash (requires tuning)
- for the hadr. showers may turn out to be easier to tune the fast simulation than to fix Geant4

