Patterns of flavour signals in SUSY models T. Goto, Y. Okada, T. S. and M. Tanaka, arXiv:0711.2935

Tetsuo SHINDOU

DESY

9/1/2008 Talk at SuperB Workshop VI, Valencia

Introduction	Typical flavour models	Numerical results	Summary
Outline			

- 2 Typical flavour models
- 3 Numerical results

Flavour physics in the LHC era

- A powerful discovery machine, the LHC, is starting in a year.
- Flavour experiments will become very significant in the LHC era
 - Past and present flavour experiments (Belle, Babar, Tevatron, MEGA, etc) have already give strong constraints on models beyond the SM
 - Several new experiments are under construction (MEG, LHCb, BESIII, etc)
 - There are future plans of Super B factory

J.Hewett and D. G. Hitlin (ed.), hep-ph/050326

CKM in the SM

The CKM matrix seems to work perfectly ! All the data are consistent with CKM

- Semileptonic decay $\Rightarrow |V_{ub}/V_{cb}|$
- $K \bar{K}$ mixing $\Rightarrow \epsilon_K$
- $B_d \bar{B}_d$ mixing $\Rightarrow \Delta m_{B_d}$
- $B_s \bar{B}_s$ mixing $\Rightarrow \Delta m_{B_d} / \Delta m_{B_s}$
- CPV in $B \rightarrow J/\psi K_S \Rightarrow \phi_1$
- CPV in $B \to \pi^+\pi^-$ and $B \to \rho^+\rho^- \Rightarrow \phi_2$
- CPV in $B \rightarrow D^{(*)}K \Rightarrow \phi_3$

• $B \rightarrow \tau \nu$

••••

CKM determination by tree level process

However we should determine CKM parameters by Tree-Level processes in order to study new physics effect

Which sector is affected by NP depends on a detail of a model

Improvement of ϕ_3 is important

Sensitivity at present and future LFV exp.

- MEG (starting soon) $\Rightarrow B(\mu \rightarrow e\gamma) < O(10^{-13})$
- superB factory \Rightarrow B($\tau \rightarrow \mu(e)\gamma$) < $O(10^{-9})$

Sensitivity at present and future B exp.

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ○臣 - のへで

(日) (日) (日) (日) (日) (日) (日) (日)

Flavour physics in various SUSY models

T. Goto, Y. Okada, Y. Shimizu, T.S., and M. Tanaka, PRD66,035009, PRD70,035012 T. Goto, Y. Okada, T.S., and M. Tanaka, arXiv:0711.2935

- In order to see how flavour signals can distinguish different models, we study various quark and lepton flavour observables in several SUSY models.
- Models
 - mSUGRA (CMSSM)
 - MSSM with Right-handed Neutrinos
 - SU(5) SUSY GUT with RN
 - MSSM with U(2) flavour symmetry
- Processes
 - LFV
 - $A_{CP}(b \rightarrow s(d)\gamma), S_{CP}(B \rightarrow K^*\gamma), S_{CP}(B \rightarrow \rho\gamma)$
 - $S_{CP}(B \rightarrow \phi K_S)$
 - $S_{CP}(B_s \rightarrow J/\psi \phi)$
 - Check of unitarity triangle

SUSY and flavour physics

• There are SUSY partners of the SM particles

Introduction	Typical flavour models	Numerical results	Summary
Outline			

Classifications of models

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

mSUGRA (CMSSM)

- Supersymmetry-breaking parameters at $\mu_{\rm G}$:
 - Universal soft scalar masses: $m_Q^2 = m_U^2 = m_D^2 = m_L^2 = m_E^2 = m_0^2 \mathbf{1}, m_{H_1}^2 = m_{H_2}^2 = m_0^2$ • GUT relation on the gaugino masses $M_1(\mu_G) = M_2(\mu_G) = M_3(\mu_G) = m_{1/2}$
 - A-terms:

$$A_U = A_0 m_0 Y_U, A_D = A_0 m_0 Y_D, A_E = A_0 m_0 Y_E$$

• $\tan \beta = \langle H_2 \rangle / \langle H_1 \rangle$ is also a model parameter

• The model is characterized by 4(5) free parameters

mSUGRA (CMSSM)

Mass spectrums:

- Gauginos: $M_i = (\alpha_i / \alpha_G) m_{1/2}$ $\Rightarrow M_1 \sim 0.4 m_{1/2}, M_2 \sim 0.8 m_{1/2}, M_3 \sim 3 m_{1/2}$
- Squarks : $m_Q^2 \sim m_0^2 + 7m_{1/2}^2$, $m_U^2 \sim m_D^2 \sim m_0^2 + 6m_{1/2}^2$ M_{Q_3} and M_{U_3} get a large contribution from Y_t
- Sleptons: $m_L^2 \sim m_0^2 + 0.5 m_{1/2}^2$, $m_E^2 \sim m_0^2 + 0.2 m_{1/2}^2$

Flavour violation is MFV at μ_G

- Only Yukawa couplings break flavour symmetry of SU(3)⁵
- Flavour violation in sfermion sectors is induced by running ⇒ Flavour mixings in Q̃ sector
- Negligible non-standard contribution in the CKM fit
- Significant contribution to $b \rightarrow s\gamma$
- EDM experiments constrain CP phases in A- and μ- terms In our analysis, φ_μ = φ_A = 0 is used

Numerical results

The value of μ (mSUGRA)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへで

Introducing seesaw mechanism to CMSSM

- Seesaw mechanism is an attractive candidate to generate small but finite neutrino masses
 - Introducing heavy right-handed neutrinos, N^c $W = Y_E E^c L \cdot H_1 + Y_N E^c L \cdot H_2 + \frac{1}{2} M_N N^c N^c$ N^c are decoupled

$$\mathcal{W} = Y_E E^c L \cdot H_1 - \frac{1}{2} \kappa_{\nu} (L \cdot H_2) (L \cdot H_2)$$

• Y_N and M_N are related to U and m_i

$$(m_{\nu}) = U^* \operatorname{diag}(m_1, m_2, m_3) U^{\dagger} = \langle H_2 \rangle^2 Y_N^T M_N^{-1} Y_N$$

• There are additional 3+6 real parameters at μ_R : Taking diagonal Y_E and M_N basis, Y_N can be written as $Y_N = \frac{1}{\langle H_2 \rangle} \text{diag}(\sqrt{M_{N1}}, \sqrt{M_{N2}}, \sqrt{M_{N3}}) R \text{diag}(\sqrt{m_1}, \sqrt{m_2}, \sqrt{m_3}) U^{\dagger}$ Ligenvalues of M_N $R^T R = \mathbf{1} \Rightarrow 6$ parameters • Mixing in \tilde{L} sector is induced through the running

MSSM with RN

We consider three structures of Y_N

- Degenerate (and real R) RN: $M_N \propto 1$
 - Solar- ν mixing $\Rightarrow \tilde{\mu}_L \rightarrow \tilde{\mathbf{e}}_L$
 - Atmospheric- ν mixing $\Rightarrow \tilde{\tau}_L \rightarrow \tilde{\mu}_L$
- Non-Degenerate (I): M_N /x1

J. Ellis et al, PRD66, 115013

$$Y_{N} = \begin{pmatrix} * & & \\ & * & * \\ & & * & * \end{pmatrix} \Rightarrow \begin{bmatrix} \tilde{\mu}_{L} \to \tilde{e}_{L} \& \tilde{\tau}_{L} \to \tilde{e}_{L} : \text{ suppressed} \\ \tilde{\tau}_{L} \to \tilde{\mu}_{L} : \text{ unsuppressed} \end{bmatrix}$$

Non-Degenerate (II): M_N /×1

J. Ellis et al, PRD66, 115013

$$Y_{N} = \begin{pmatrix} * & * \\ & * \\ & * \\ & * & * \end{pmatrix} \Rightarrow \begin{bmatrix} \tilde{\mu}_{L} \to \tilde{e}_{L} \& \tilde{\tau}_{L} \to \tilde{\mu}_{L} \text{: suppressed} \\ \tilde{\tau}_{L} \to \tilde{e}_{L} \text{: unsuppressed} \end{bmatrix}$$

• Large contribution to LFV is expected for large Y_N $\Rightarrow \mu \rightarrow e\gamma$ constraint can be very strong for heavy M_N e^+ , μ^+ , μ^+ , e^+ , e^+ , e^-

Quark sector is almost same as mSUGRA (CMSSM) case

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

• Y_N affects also the running of $m_{H_2}^2$

Numerical results

μ in MSSM with RN

▲口▶▲圖▶▲≣▶▲≣▶ = ● のQで

SU(5) SUSY GUT with RN

SUSY seems to support a grand unification

Quarks and leptons are embedded in
10 = {Q, U^c, E^c} -5 = {D^c, L} 1 = {N^c}
mixing in Q (CKM) ⇒ mixing in E^c above μ_G
mixing in L (Y_N) ⇒ mixing in D^c above μ_G
Y_N ⇒ mixing in L̃ (same as MSSM with RN)

SU(5) SUSY GUT with RN

Again we consider three structures of Y_N

- Degenerate: $M_N \propto 1$
 - Solar- ν mixing $\Rightarrow \tilde{\mu}_L \rightarrow \tilde{\mathbf{e}}_L$ & $\tilde{\mathbf{s}}_R \rightarrow \tilde{\mathbf{d}}_R$
 - Atmospheric- ν mixing $\Rightarrow \tilde{\tau}_L \rightarrow \tilde{\mu}_L$ & $\tilde{b}_R \rightarrow \tilde{s}_R$
- Non-Degenerate (I):

$$Y_N = \begin{pmatrix} * & & \\ & * & * \\ & & * & * \end{pmatrix} \Rightarrow \begin{bmatrix} \tilde{\mu}_L \to \tilde{e}_L \& \tilde{\tau}_L \to \tilde{e}_L : \text{ suppressed} \\ \tilde{\tau}_L \to \tilde{\mu}_L \& \tilde{b}_R \to \tilde{s}_R : \text{ unsuppressed} \end{bmatrix}$$

Non-Degenerate (II):

$$Y_{N} = \begin{pmatrix} * & * \\ & * \\ & * \\ & * \end{pmatrix} \Rightarrow \begin{bmatrix} \tilde{\mu}_{L} \to \tilde{e}_{L} \& \tilde{\tau}_{L} \to \tilde{\mu}_{L} \text{: suppressed} \\ \tilde{\tau}_{L} \to \tilde{e}_{L} \& \tilde{b}_{R} \to \tilde{d}_{R} \text{: unsuppressed} \end{bmatrix}$$

(日) (日) (日) (日) (日) (日) (日) (日)

MSSM with U(2) FS

- A. Pomarol, D. Tommasini, NPB466,3; R. Barbieri, G. Dvarli, L. Hall, PLB377, 76;
- R. Barbieri, L. Hall, NCA110, 1; R. Barbieri, L. Hall, S. Raby, A. Romanino, NPB493, 3;
- R. Barbier, L. Hall, A. Romanino, PLB401,47;
- A. Masiero, M. Piai, A. Romanino, L. Silverstrini, PRD64, 075005 ...
- Y_{U,D} and m²_{Q,U,D} are controlled by the same flavour symmetry, U(2)
 - 1st and 2nd generation \rightarrow U(2) doublet
 - 3rd generation \rightarrow U(2) singlet
 - Symmetry is broken as

 $\mathsf{U}(2) \stackrel{\epsilon}{\rightarrow} \mathsf{U}(1) \stackrel{\epsilon'}{\rightarrow}$ no symmetry, $\epsilon \gg \epsilon'$

 We ignore the lepton sector in this analysis Lepton sector depends on details of the model (How to generate neutrino masses, etc)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SUSY breaking at μ_{G}

Yukawa couplings

$$\begin{array}{ll} \mathsf{Y}_{\mathsf{Q}} \simeq \mathsf{y}_{\mathsf{Q}} \begin{pmatrix} \mathsf{0} & \mathsf{a}_{\mathsf{Q}} \epsilon' & \mathsf{0} \\ -\mathsf{a}_{\mathsf{Q}} \epsilon' & \mathsf{b}_{\mathsf{Q}} \epsilon & \mathsf{c}_{\mathsf{Q}} \epsilon \\ \mathsf{0} & \mathsf{d}_{\mathsf{Q}} \epsilon & \mathsf{1} \end{pmatrix} & \mathsf{Q} = \mathsf{U}, \mathsf{D} \\ \Rightarrow \epsilon \sim \lambda^{2}, \, \epsilon' \sim \lambda^{3} \end{array}$$

Sfermion mass matrix

$$m_{X}^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 + r_{22}^{X} \epsilon^{2} & r_{23}^{X} \epsilon \\ 0 & r_{23}^{X*} \epsilon & r_{33}^{X} \end{pmatrix} \quad X = Q, U, D$$

Rightarrow possible large 2-3 mixing

- We set $A_Q = a_0 Y_Q$ for simplicity
- GUT relation on gaugino masses are assumed

Cut-off and models

Introduction	Typical flavour models	Numerical results	Summary
Outline			

Processes

We consider the following processes

- LFV in MSSM with RN and SU(5) with RN
- CP asymmetry of $b \rightarrow s(d)\gamma$
 - Direct CP asymmetries
 - Time-dependent CP asymmetries:

 $S_{CP}(B_d \to K^*\gamma) \& S_{CP}(B_d \to \rho\gamma) \Leftarrow | B_d - \bar{B}_d | \times | b \to s(d)\gamma$ $m_{s,d}/m_b$ suppression in the SM ($S_{CP} = \frac{2\text{Im}(e^{-i\phi_M}C_{7L}C_{7R}))}{|C_{2L}^2|+|C_{2D}^2|}$) D. Atwood, M. Gronau, and A. Soni, PRL79,185 • $S_{CP}(B_d \to \phi K_S) \Leftarrow | B_d - \bar{B}_d | \times | b \to ss\bar{s} |$ new CP phase in $b \rightarrow s$ penguin \Rightarrow deviation from $S_{CP}(B_d \rightarrow J/\psi K_S)$ • $S_{CP}(B_s \rightarrow J/\psi\phi) \Leftarrow B_s - \bar{B}_s \times b \rightarrow sc\bar{c}$ Sensitive to new phase in $B_s - \bar{B}_s$ • Correlation between ϕ_3 and $\Delta m_{B_s} / \Delta m_{B_d}$ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● のへで

LFV in MSSM+RN

LFV in SU(5)+RN

SU(5)+RN Non-degen. (I)

SU(5)+RN Non-degen. (II)

 $A_{CP}(b \rightarrow s\gamma)$

 $\mathsf{A}_{CP}(b \rightarrow d\gamma)$

▲御 ▶ ▲ 臣 ▶ ▲ 臣

ъ

Correlation between ϕ_3 and $\Delta m_{B_s} / \Delta m_{B_d}$

Correlation between ϕ_3 and $\Delta m_{B_s} / \Delta m_{B_d}$

Introduction	Typical flavour models	Numerical results	Summary
Outling			

LFV

	$\mu \rightarrow \mathbf{e}\gamma$	$\tau \to \mu \gamma$	$\tau \to \mathbf{e} \gamma$
mSUGRA	—	_	_
MSSM+RN			
degenerate			
non-degen. I			
non-degen. II			
SU(5)+RN			
degenerate	\checkmark		
non-degen. I	\checkmark		
non-degen. II	\checkmark		
U(2) FS	—	_	_

・ロト・西ト・西ト・西ト・日・

CPV in $b \rightarrow s(d)$ — (I)

	$A_{CP}(s\gamma)$	$S_{CP}(K^*\gamma)$	$A_{CP}(d\gamma)$	$S_{CP}(\rho\gamma)$
mSUGRA				
MSSM+RN				
degenerate				
non-degen. I				
non-degen. II				
SU(5)+RN				
degenerate		•		•
non-degen. I		\checkmark		
non-degen. II				
U(2) FS	\checkmark	\checkmark		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

CPV in $b \rightarrow s(d)$ — (II)

	$\Delta S_{CP}(\phi K_{S})$	$S_{CP}(B_s \rightarrow J/\psi \phi)$	$\Delta \phi_3$
mSUGRA			
MSSM+RN			
degenerate			
non-degen. I			
non-degen. II			
SU(5)+RN			
degenerate	•	•	
non-degen. I			•
non-degen. II			•
U(2) FS	\checkmark		٠

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ()

- We have studied on various quark and lepton flavour signals for several typical SUSY models, mSUGRA, MSSM with RN, SU(5) SUSY GUT with RN, and MSSM with U(2) FS.
- Each model gives different pattern of the predictions on b → s, b → d processes and LFV.
- It is very important to see as many processes as possible for exploring flavour structure of new physics in the LHC era.

Numerical results

How to catch a "NP" fish

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 三臣 - のへで

Numerical results

How to catch a "NP" fish

Introduction									
	m	tr	n	а		Cti	0	n	
			S	u	u	ωu	U		

End of talk

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

・ロト ・聞 ト ・ ヨト ・ ヨト

 $A_{CP}(b \rightarrow s\gamma)$

▶ ★@▶★ ●▶ ★ ●

・ロト ・聞 ト ・ ヨト ・ ヨト

 $A_{CP}(b \rightarrow d\gamma)$

▶ ★@▶★ ●▶ ★ ●

< 17 ▶

$S_{CP}(B_d \rightarrow \phi K_S) - S_{CP}(B_d \rightarrow J/\psi K_S)$

<ロ> <同> <同> < 同> < 同>

