Experimental Aspects of $B \rightarrow X_s \gamma$

John Walsh INFN, Pisa

SuperB Workshop VI Jan08, Valencia

Motivation

- Search for New Physics
 - branching fraction
 - CP asymmetry
 - isospin asymmetry
- Measure b-quark mass and other HQE parameters
 - helpful in reducing systematic errors on Vub

Radiative Penguin Decay

- Flavor changing neutral current:
 - Not present at tree level in SM
- Loop diagram
 - measurements sensitive to new heavy particles in diagrams
- Current status of BF
 - Experiment (HFAG):

 $B(B \to X_s \gamma, E > 1.6 GeV) = (3.55 \pm 0.26) \times 10^{-4}$

- Theory:

 $B(B \to X_s \gamma, E > 1.6 GeV) = (3.15 \pm 0.23) \times 10^{-4}$ (Misiak, et al)

 $B(B \rightarrow X_s \gamma, E > 1.6 GeV) = (2.98 \pm 0.26) \times 10^{-4}$ (Becher/Neubert)

Inclusive vs. Exclusive Measurements

- **Theory**: inclusive processes are easier to calculate.
 - Larger uncertainties occur for calculations of exclusive modes.
- **Experiment**: in many cases, including $b \rightarrow s\gamma$, inclusive measurements are more difficult.
 - fewer kinematic handles to suppress backgrounds
 - in some cases, rest from of B meson not determined
- Lots of work going on in both inclusive and exclusive decays, both theoretically and experimentally
- This talk: inclusive $b \rightarrow s\gamma$ measurements

Inclusive measurements

- Ideally, you'd like to make a fully inclusive measurement
 - 1. no requirement on the X_s hadronic system
 - 2. no cut on photon energy
- X_s hadronic system
 - "fully inclusive" makes no requirement, but tags other B in event
 - "semi inclusive" reconstructs as many exclusive decay modes as possible. Estimate the amount of stuff that is missing.
- Photon energy: in practice, some cut on photon energy is unavoidable → make it as low as possible

Min Photon Energy Cut

"Traditionally" theorists have requested going to lowest possible photon energy

- Can we do better?
- Do we need to?

Experimental Approaches: semi-inclusive

- Advantages:
 - good background rejection
 - photon energy measured in B rest frame (matches with theoretical calculations)
 - good photon resolution through measurement of hadronic mass
 - charge and flavor of B parent known → asymmetries

- Sum up many (up to 30 or so) individual modes
- Rely on simulation to estimate the missing fraction
 - Disadvantages:
 - only about half of rate is actually measured
 - Monte Carlo does not do a great job of simulating X_s fragmention
 - missing modes fraction is even greater at higher mass (low photon energy)
 - BF is systematics limited

Semi-inclusive modes

- A Sum-of-Exclusive Modes Approach:
 - B->Xsγ
 - Fully reconstruct the signal B using 38 final decay modes.
 - M_{Xs} [0.6,2.8] GeV, E_γ [1.9, 2.6] GeV
 - E*γ>1.6 GeV
 - Flavor blind modes are not used for A_{CP} calculation

Final states of the X_s used in B reconstruction.

, е	${\rm Final}\;{\rm Stat}\epsilon$	_ Гуре	Final State
1	$K^{0}_{s}\pi^{+}$	20	$K_{s}^{0}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$
2	$K^+\pi^0$	21	$K_{s}^{0}\pi^{+}\pi^{-}\pi^{0}$
3	$K^+\pi^-$	22	$K_{s}^{0}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
4	$K^0_s \pi^0$	23	$K^+\eta$
5	$K^{+}\pi^{+}\pi^{-}$	24	$K^0_s\eta$
6	$K_{S}^{0}\pi^{+}\pi^{0}$	25	$K^0_s\eta\pi^+$
7	$K^+\pi^0\pi^0$	26	$K^+\eta\pi^0$
8	$K_{s}^{0}\pi^{+}\pi^{-}$	27	$K^+\eta\pi^-$
9	$K^{+}\pi^{-}\pi^{0}$	28	$K^0_s\eta\pi^0$
10	$K^0_s\pi^0\pi^0$	29	$K^+\eta\pi^+\pi^-$
11	$K_{s}^{0}\pi^{+}\pi^{-}\pi^{+}$	30	$K^0_s\eta\pi^+\pi^0$
12	$K^{+}\pi^{+}\pi^{-}\pi^{0}$	31	$K^0_s\eta\pi^+\pi^-$
13	$K^{0}_{s}\pi^{+}\pi^{0}\pi^{0}$	32	$K^+\eta\pi^-\pi^0$
14	$K^{+}\pi^{+}\pi^{-}\pi^{-}$	33	$K^+K^-K^+$
15	$K^{0}_{s}\pi^{0}\pi^{+}\pi^{-}$	34	$K^+K^-K^0_s$
16	$K^{+}\pi^{-}\pi^{0}\pi^{0}$	35	$K^{+}K^{-}K^{0}_{s}\pi^{+}$
17	$K^+\pi^+\pi^-\pi^+\pi^-$	36	$K^{+}K^{-}K^{+}\pi^{0}$
18	$K^0_s \pi^+ \pi^- \pi^+ \pi^0$	37	$K^+K^-K^+\pi^-$
19	$K^{+}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	38	$K^{+}K^{-}K^{0}_{s}\pi^{0}$

Semi-inclusive: BB background suppression

- About 70% of highenergy photons in BB background events come from π^0 and η decay
- Construct veto by pairing high-energy photon with all other photon candidates in event. γγ invariant mass and energy of second photon are discriminating variables

Semi-inclusive: Continuum background suppression

Event shape variables exploited to reduce continuum background

- jettier than signal (and BB) events
- Boosted DecisionTree (BDT) to combine the information of 17 ROE variables
 - 7 Event shape variables, 2 B kinematic variables and 8 flavor tagging variables

Semi-inclusive: Fit to B mass, photon spectrum

Semi-inclusive: Systematics

The main difficulty with the semi-inclusive approach is accounting for the missing modes

Check MC fragmentation on reconstructed modes: not very good agreement

Final states	Data/Mon	te Carlo
$\overline{K^{-}\pi^{+}}, K_{s}^{0}\pi^{-}$	$0.50 \pm$	0.07
$K^-\pi^0, K^0_S\pi^0$	$0.19 \pm$	0.12
$K^{-}\pi^{+}\pi^{-}, K^{0}_{S}\pi^{+}\pi^{-}$	$1.02 \pm$	0.14
$K^-\pi^+\pi^0, K^{\check{0}}_S\pi^-\pi^0$	1.34 ±	0.24
$K^{-}\pi^{+}\pi^{-}\pi^{+}, K^{0}_{S}\pi^{+}\pi^{-}\pi^{-}$	$2.67 \pm$	0.96
$K^{-}\pi^{+}\pi^{-}\pi^{0}, K^{0}_{S}\pi^{+}\pi^{-}\pi^{0}$	$1.29 \pm$	0.61
$K^{-}\pi^{0}\pi^{0}, K^{0}_{S}\pi^{0}\pi^{0}$	1 89 +	1 33
$K^{-}\pi^{+}\pi^{0}\pi^{0}, K^{0}_{S}\pi^{-}\pi^{0}\pi^{0}$	1.07 =	1.55
$K^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}, K^{0}_{S}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$		
$K^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{0}, K_{S}^{0}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	1.32	-1.55 -1.32
$K^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}, K^{0}_{S}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$		
$K^-\eta, K^0_S\eta, K^-\eta\pi^+$		
$K^{0}_{S}\eta\pi^{-}, K^{-}\eta\pi^{0}, K^{0}_{S}\eta\pi^{0}$	0.83+	-1.00
$K^{-}\eta \pi^{+}\pi^{-}, K^{0}_{S}\eta \pi^{+}\pi^{-}$	0.85_	-0.83
$K^-\eta\pi^+\pi^0, K^0_S\eta\pi^-\pi^0$		
$K^{-}K^{+}K^{-}, K^{-}K^{+}K^{0}_{S}$		
$K^{-}K^{+}K^{-}\pi^{+}, K^{-}K^{+}K^{0}_{S}\pi^{-}$	0.27^{+}	-0.54 -0.27
$K^-K^+K^-\pi^0, K^-K^+K^0_S\pi^0$		

J. Walsh

Experimental Approaches: fully inclusive with lepton tag

- Inclusive selection of high-energy photons
- Lepton tag on other side reduces continuum background
- Careful studies on data + MC for B<u>B</u> background

- Advantages:
 - more inclusive → no assumptions on Xs fragmentation
 - higher statistics
 - potential to provide best BF measurement at Bfactories

- Disadvantages:
 - photon energy measured in Y(4S) rest frame
 - calorimeter resolution for photon energy
 - many sources of B<u>B</u> background need to be estimated
 - b→dg not detected: CP asymmetry is b→(s/d)g

J. Walsh

Inclusive: very large backgrounds

- Very large background to inclusive high-energy photons
 - mostly from π^0 and η decays
 - initial state radiation in q<u>q</u> events
- Lepton tag on other side achieves large reduction in continuum background
- Use also missing energy to select semi-leptonic B decays
- Event shape variables also exploited using multivariate techniques

Inclusive Photons $E\gamma>1.6$ GeV

Inclusive, lepton tag: after selection

- BB background reduced with π^0 and η veto
- Still significant background remains at low E_{γ}
- Study inclusive π^0 and η production to tune MC of BB background

$\gamma\gamma$ invariant mass in bins of π^0 energy

Fits to data and MC

J. Walsh

Inclusive, lepton tag: Photon Spectrum

90 million BB pairs

- Note worse resolution compared to semiinclusive
- Large error bars on lowest energy bin 1.9-2.0 GeV

Inclusive, lepton tag: Systematics/Model Uncertainties

 Energydependent efficiency → large extrapolation errors

 BB background subtraction

Experimental Approaches: fully inclusive with hadronic tag

- Start with a fully-reconstructed hadronic B decay
- Search for high-energy photon in rest of event
- Fits to m_{ES} spectrum of hadronic B yields photon spectrum

- Advantages:
 - more inclusive → no assumptions on Xs fragmentation
 - photon energy in B rest frame
 - − charge of parent B known
 → isospin asymmetry

- Disadvantages:
 - low efficiency for hadronic reconstruction

Inclusive, hadronic tag: A New Approach

- Hadronic decay of one B meson is fully reconstructed
 - 4-momentum, charge and flavour determined
 - Enables measurement of Isospin and CP Asymmetry
 - With 4-momentum of Y(4S), also 4-momentum of decaying B is known
 - Photon energy can be measured in B rest frame
- Signal and BB background yields determined from fit to M_{ES} in bins of photon energy

$$m_{ES} = \sqrt{(E_{beam}^*)^2 - P_{B_{reco}}^2}$$

- Continuum events do not peak in M_{ES} and can thus be subtracted
- Normalization for branching fraction is determined from number of Bs in full reconstruction sample
- Small efficiency extrapolation
- Disadvantage: small B reconstruction efficiency of ~0.3%

J. Walsh

Inclusive, hadronic tag: Event Selection

J. Walsh

Inclusive, hadronic tags: m_{ES} Fits

• Determine Partial Branching Fraction in bins of photon energy:

J. Walsh

SuperB Workshop VI

Inclusive, hadronic tags: E_v Spectrum

J. Walsh

SuperB Workshop VI

Inclusive, hadronic tags: Systematics

- Expected low systematics due to fully reconstructed hadronic tags, however:
 - 12% (of BF) due to extraction of yields from mES fits
 - 10% due to BB background modeling

$B \rightarrow X_{s\gamma} BF$ Results

- Measurements are in good agreement
 - with each other
 - with theoretical calculations

J. Walsh

Uncertainties for 3 Approaches

Approach	Lumi (fb ⁻¹)	E _{min} (GeV)	Partial BF (10 ⁻⁶)	Stat %	Syst %	Model %
Semi- inclusive	80	1.9	327	6	15	2
Inclusive, lepton	80	1.9	367	8	9	8
Inclusive, hadron	210	1.9	366	23	16	-

- Semi-inclusve syst error limits usefulness for BF measurements
 - largely absent in asymmetry measurements, though
- Inclusive, lepton can expect improvement in syst and model errors as well
- Inclusive, hadron new analysis, can expect improvements going forward, although 16% syst. looks worriesome

Large stat component: will be smaller with increased statistics

Another "use" of $B \rightarrow X_s \gamma$: measuring m_b

- One of the "uses" of the $B \rightarrow X_{s\gamma}$ measurement has been its ability to determine the HQE parameters m_b and μ_{π}^2 via spectrum moments
- This is important because reducing the error on m_b leads to large improvements in the determination of V_{ub} using inclusive measurements

Inclusive V_{ub} and m_b

• V_{ub} extracted from partial $b \rightarrow ulv$ BF: $|V_{ub}| = \left[\Delta B / (\Delta \zeta \tau_B)\right]^{\frac{1}{2}}$

from theory

Best measurement of m_b important!

• m_b dependence is large:

Determining m_b

- Hadronic and leptonic moments in b→clv
- Photon spectrum in $b \rightarrow s\gamma$

- HFAG uses the Flächer/Buchmüller analysis for m_b and μ_{π}^2
- The m_b Bible:
 hep-ph/0507253

🐯 perB Workshop VI

m_b results

LP2007 update

$$\begin{split} m_{\rm b} &= 4.613 \ \text{+/-} \ 0.022 \ \text{+/-} \ 0.027 \\ \mu_{\pi}{}^2 &= 0.408 \ \text{+/-} \ 0.017 \ \text{+/-} \ 0.031 \end{split}$$

- Improvements in m_b will lead to improvements in V_{ub}, which is already theory error-limited
- From HFAG (2007):

|Vub| = 4.31 + - 0.17 (exp.) + - 0.35 (theory)

On 8.9% total error, 6.9% is due to uncertainty in HQE parameters, mostly $m_{\rm b}$

Expectations for SuperB

- No real work done on this yet, but we can make rough estimates based on B-factory analyses
- Of the 3 approaches, best best is inclusive, lepton tag analysis

• Look in more detail at errors for that analysis

Example Systematics: Inclusive, lepton

These numbers	Effect	Uncertainty (%)
for 80 fb ⁻¹	BB background	5.5
Largest component	Photon selection	3.3
will almost scale with	Efficiency event shape cuts	3
IumiOthers can	Lepton ID	2
be	Total Syst.	8.5
with	Stat.	8
event selection	Need to	study carefully

Need to study carefully, but we can certainly reduce the systematic uncertainty significantly at SuperB → perhaps we can achieve 5% experimental error

Asymmetry Measurements

- Asymmetry measurements become very interesting at SuperB
- Lower systematics due to cancellations in ratio
- Current uncertainties very statistics-dominated

• The different approaches previously presented are able to measure different asymmetries...

Asymmetry Measurements (2)

Direct CP Asymmetry $A_{CP} = \frac{B(B \to X_S \gamma) - B(\overline{B} \to X_S \gamma)}{B(B \to X_S \gamma) + B(\overline{B} \to X_S \gamma)}$

- SM: $A_{CP} = 0.0044^{+0.0024}_{-0.0014}$
- BaBar Semi-inclusive result (80 fb-1):
 - $A_{CP} = 0.025 + 0.050 \text{ (stat)} + 0.015 \text{ (syst.)}$

Direct CP Asymmetry (s+d) $A_{CP}(s+d) = \frac{B(B \to X_{s,d}\gamma) - B(B \to X_{s,d}\gamma)}{B(B \to X_{s,d}\gamma) + B(\overline{B} \to X_{s,d}\gamma)}$

- SM: A_{CP}(s+d) almost identically zero
- Inclusive measurements include $B \rightarrow X_{d\gamma}$
- A_{CP}(s+d) = -0.110 +- 0.115 (stat) +- 0.017 (syst.) (lepton)
- A_{CP}(s+d) = 0.10 +- 0.18 (stat) +- 0.05 (syst.) (hadron)

Isospin Asymmetry

$$A_{-0} = \frac{B(\overline{B}^{0} \to X_{s}\gamma) - B(B^{-} \to X_{s}\gamma)}{B(\overline{B}^{0} \to X_{s}\gamma) + B(B^{-} \to X_{s}\gamma)}$$

SM: 5-10% in exclusive K*γ channel

$$\Delta_{-0} = -0.006 + -0.058_{\text{stat}} + -0.009_{\text{syst}} + -0.024_{(B0/B+)} \text{ (semi)}$$

$$\Delta_{0} = -0.06 + -0.15_{\text{stat}} + -0.07_{\text{syst}} \text{ (hadron)}$$

JUDELD MOLKSHOD AT

J. Waisii

Summary

- Currently BF(b \rightarrow s γ) measured to about 7%, while theoretical error is around the same
- Real studies not performed yet, but we can see that $BF(b \rightarrow s\gamma)$ will likely be measured with perhaps 5% experimental error, perhaps better
 - Asymmetries have smaller systematic errors (maybe 1-2%?) and will give stringent tests at SuperB
- Also expect improvements in measurements of photon spectrum moments → lead to improvements in |V_{ub}|
 - current moment measurements are stats-limited
 - complicated relationship between moments and $m_b \rightarrow not$ easy to estimate m_b improvement without dedicated study