Search for CP violation in 4-body Cabibbo Suppressed D^0 decays.

Antimo Palano *INFN and University of Bari.* SuperB VI , Valencia, January 10, 2008

 \Box For references see:

W. Bensalem and D. London: T-Odd Triple-Product Correlations in Hadronic b Decays, hep-ph/0005018, 2000.

S. Bianco, F. L. Fabbri, D. Benson, I. Bigi: A Cicerone for the Physics of Charm, hep-ex/0309021, Journal-ref: Riv.Nuovo Cim. 26N7 (2003) 1-200.

I. Bigi: I Know She Invented Fire, But What Has She Done Recently?" – On The Future Of Charm Physics, hep-ph/0608073

Search for T-odd correlations.

 \Box Consider the Cabibbo Suppressed D^0 decay:

$$D^0 \to K^+ K^- \pi^+ \pi^-$$

 \square T-odd correlations can be formed using the momenta of the particles:

$$C_T = p_{K^+} \cdot (p_{\pi^+} \times p_{\pi^-})$$

□ Under time reversal T, we have $C_T \to -C_T$. □ $C_T \neq 0$ does not necessarily established T violation. □ Consider also:

$$\overline{D^0} \to K^+ K^- \pi^+ \pi^-$$

K⁺

K⁻

 π^{-}

 π

where we can compute:

$$\overline{C_T} = p_{K^-} \cdot (p_{\pi^-} \times p_{\pi^+})$$

 \Box Finding:

$$C_T \neq -\overline{C_T}$$

establishes CP violation.

T-odd correlations.

- \square Separate the data sample into D^0 and \overline{D}^0 .
- \Box Then separate for $C_T > 0$ and $C_T < 0$.
- \Box We build T-odd asymmetries using decay rates for a given decay:

$$A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)}$$
$$\overline{A_T} = \frac{\Gamma(\overline{C_T} > 0) - \Gamma(\overline{C_T} < 0)}{\Gamma(\overline{C_T} > 0) + \Gamma(\overline{C_T} < 0)}$$

 \Box The T-violation asymmetry is:

$$A_{Tviol} = \frac{1}{2}(A_T - \overline{A_T})$$

 $\Box A_{Tviol} \neq 0$ implies CP violation.

Test made by FOCUS.

 \Box Use of 351 events.

$$A_{Tviol} = 0.075 \pm 0.064$$

Presented by D.Pedrini at the round table of the Int. Conf. on Frontier Science Frascati (Italy), October 2002

A different approach (I. Bigi).

 \Box Compute the angle ϕ between the K^+K^- and $\pi^+\pi^-$ decay planes for $D^0 \to K^+K^-\pi^+\pi^-$. Then one has:

$$\frac{d\Gamma}{d\phi}(D^0 \to K^+ K^- \pi^+ \pi^-) = \Gamma_1 cos^2 \phi + \Gamma_2 sin^2 \phi + \Gamma_3 cos\phi sin\phi$$
$$\frac{d\Gamma}{d\phi}(\overline{D^0} \to K^+ K^- \pi^+ \pi^-) = \overline{\Gamma}_1 cos^2 \phi + \overline{\Gamma}_2 sin^2 \phi + \overline{\Gamma}_3 cos\phi sin\phi$$
$$\Gamma_3 \neq \overline{\Gamma}_3 \to CP \quad violation$$

 \Box Distribution of ϕ using BaBar data.

 \Box Not necessarily the above expression gives a good fit.

Some yields estimate using BaBar data.

□ Use ≈ 380 fb^{-1} . □ Identify D^0 or \overline{D}^0 using $D^{*+} \to D^0 \pi^+$. □ Study of $D^0 \to K^+ K^- \pi^+ \pi^-$. □ Scatter diagram Δm vs. $m(K^+ K^- \pi^+ \pi^-)$ and projections.

 \Box 36 000 events within 2σ in Δm .

 C_T distribution for the control sample $D^0 \to K^- \pi^+ \pi^+ \pi^-$.

 $\Box C_T$ distribution for $K^-\pi^+\pi^+\pi^-$ and resolution.

 \Box The resolution has been obtained as the difference between the Monte Carlo generated and reconstructed C_T value.

 $\mathsf{D}^{\mathsf{o}} \longrightarrow \mathsf{K}^{-} \pi^{+} \pi^{+} \pi^{-}$

Study of $D^0 \to K^+ K^- \pi^+ \pi^-$.

□ Channel dominated by 3-body and 2-body intermediate resonances. □ Presence of both $D^0 \to \phi \rho^0$ and $D^0 \to K^{*0} \overline{K^{*0}}$ decays. □ With 380 fb^{-1} the error on A_{Tviol} is 5.3 ×10⁻³.

 \Box Estimate for 10 ab^{-1} .

 \Box We expect $\approx 10^6$ events.

 \Box The data set is then divided into 4 class of events. Using 250 ×10³ events for each category, the error on A_{Tviol} is 1 × 10⁻³.

Study of $D^0 \rightarrow 2\pi^+ 2\pi^-$.

 \Box Scatter diagram Δm vs. $m(2\pi^+2\pi^-)$ and projections.

 \Box 148,500 events within 2σ in Δm .

Y_L^0 Moments.

□ Small asymmetries could be evidenced by differences in Y_L^0 moments. □ Example of Y_1^0 moments for $D^0 \to K^+ K^- \pi^+ \pi^-$ and $D^0 \to 2\pi^+ 2\pi^-$.

 \square CP asymmetries can be computed on Y_L^0 moments separated for D^0 and \overline{D}^0 .

A more complete approach.

□ Full amplitude analysis. □ $D^0 \rightarrow \phi \rho^0$ in P-wave is described by a term of the type:

 $(\mathbf{t}_{\phi} imes \mathbf{p}_{
ho}) \cdot \mathbf{t}_{
ho}$

where the **t** are obtained from differences between D^0 center of mass 3-momenta.

 \Box Similarly for $D^0 \to K^* \overline{K}^*$.

 \Box A Full amplitude analysis is able to extract the amplitudes but in addition is able to measure relative phases.

Conclusions.

 \Box 4-body Cabibbo suppressed charm decays provide many variables where it is possible to test for CP violation.

 \Box At a Super B-factory the sensitivity on CP violation can go below 10^{-3} .