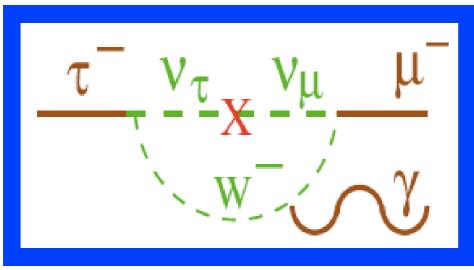
Lepton Flavor Violation in Tau decays

Swagato Banerjee

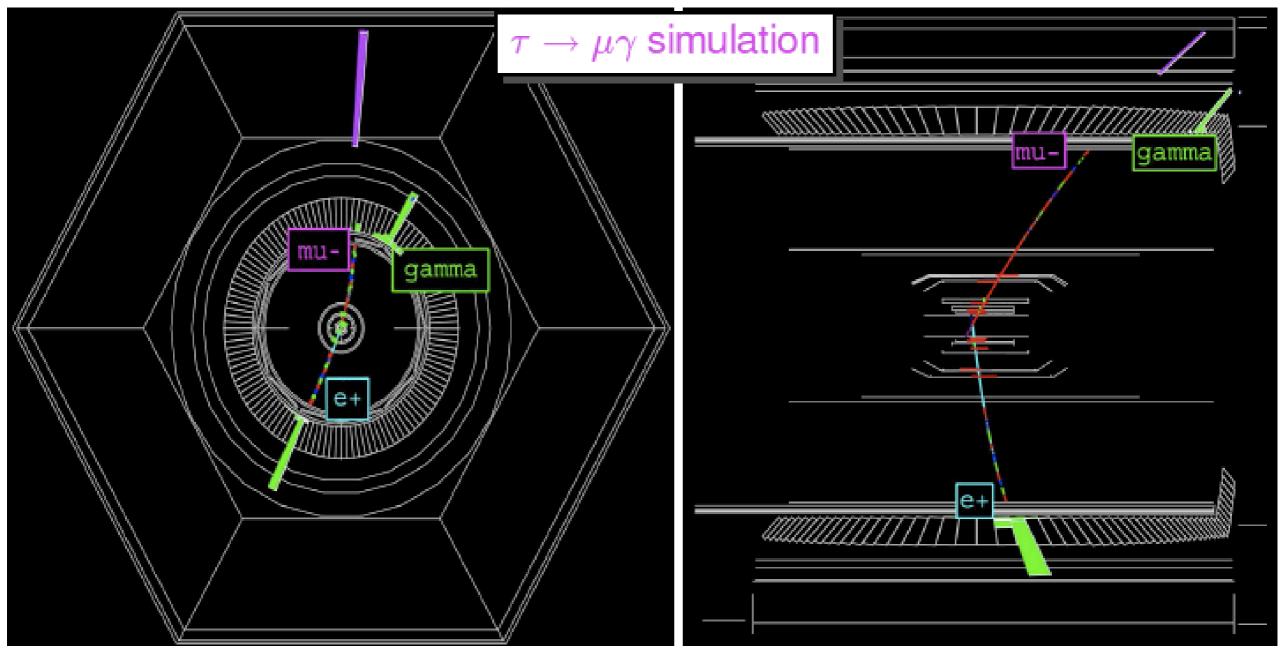


University British Columbia of Victoria Canada

SuperB Workshop VI Retreat at IFIC 7-15th January, 2008 SuperB

LFV in **T** decays

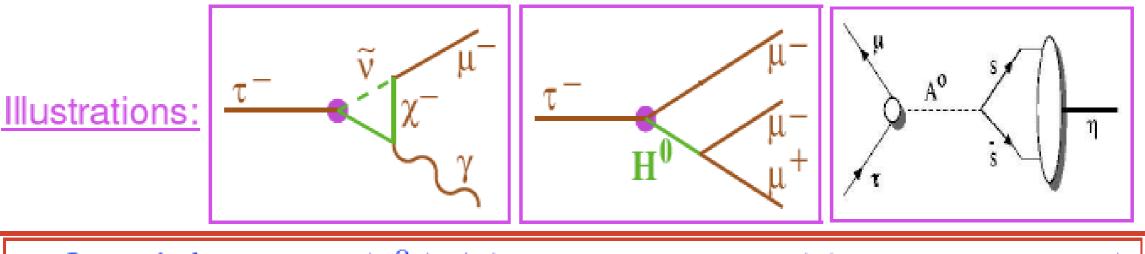
- Lepton flavor violation (LFV)
 - not forbidden by SM gauge symmetry
 - most new models naturally include LFV vertex
- In SM, LF is conserved for zero degenerate ν masses
- Now we have clear indication that ν 's have finite mass \Rightarrow Lepton Flavor is violated in Nature: but by how much?
- SM extended to include finite ν mass and mixing predicts LFV


$$\begin{split} &\mathcal{B}(\tau^{\pm} \to \mu^{\pm} \gamma) [\text{Lee-Shrock, Phys. Rev. D 16, 1444 (1977)}] \\ &= \frac{3\alpha}{128\pi} \left(\frac{\Delta m_{23}^2}{M_W^2}\right)^2 \sin^2 2\theta_{\text{mix}} \mathcal{B}(\tau \to \mu \bar{\nu}_{\mu} \nu_{\tau}) \\ &\text{With } \Delta \sim 10^{-3} \text{ eV}^2, M_W \sim \mathcal{O}(10^{11}) \text{ eV} \\ &\approx \mathcal{O}(10^{-54}) \ (\theta_{\text{mix}}: \text{max}) \end{split}$$

... many orders below experimental sensitivity!

If we saw ...

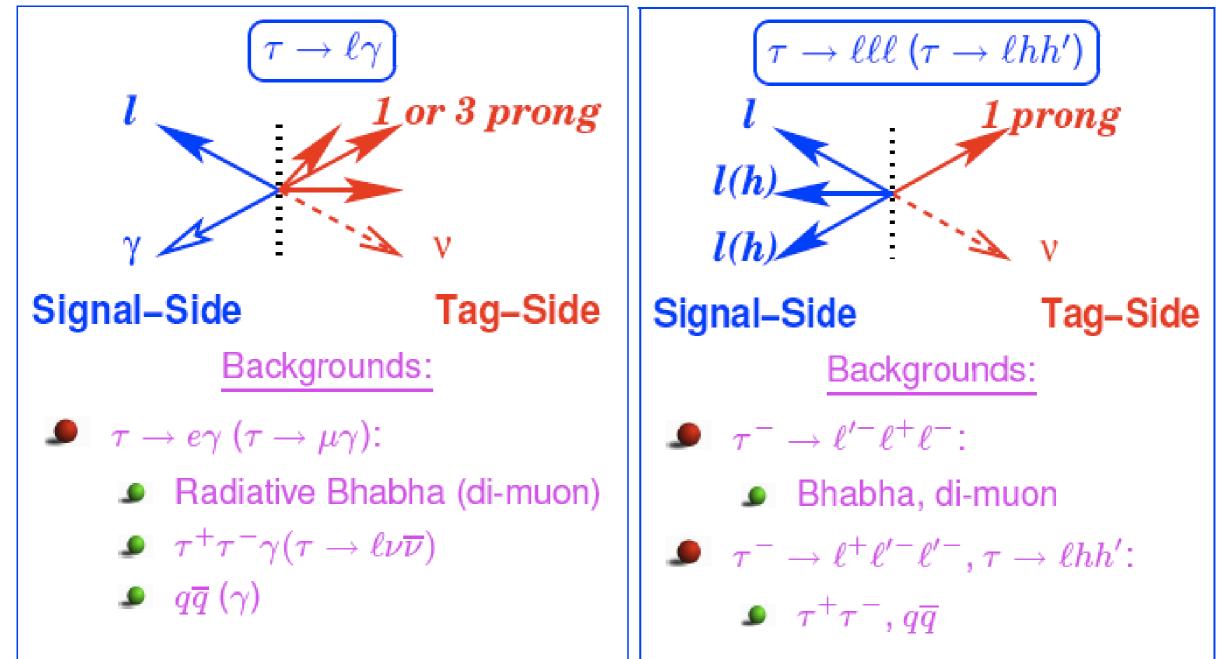
(Energy, Mass)_{τ -daughters} ~ ($\frac{\sqrt{s}}{2}$, m_{τ}) (upto resolution & radiation)


...unambiguous signature of new physics!

LFV in **T** decays

Some models predict LFV upto existing experimental bounds

	${\cal B}(au o \ell \gamma)$	$\mathcal{B}(au o \ell \ell \ell)$
SM+v-mixing (PRL95(2005)41802,EPJC8(1999)513)	10^{-54}	10^{-14}
SUSY Higgs (PLB549(2002)159, PLB566(2003)217)	10^{-10}	10^{-7}
SM+Heavy Majorana $\nu_{ m R}$ (PRD66(2002)034008)	10^{-9}	10^{-10}
Non-Universal Z' (PLB547(2002)252)	10^{-9}	10^{-8}
SUSY SO(10) (NPB649(2003)189, PRD68(2003)033012)	10^{-8}	10^{-10}
mSUGRA+seesaw (EPJC14(2000)319, PRD66(2002)115013)	10^{-7}	10^{-9}
MSSM+seesaw (PRD66 (2002) 057301) $\mathcal{B}(\tau \rightarrow \mu \gamma)$: $\mathcal{B}(\tau \rightarrow \mu \gamma)$	$(\mu\mu): \mathcal{B}(\tau \to \mu \eta)$	= 1.5 : 1 : 8.4



search for $\tau \to \ell \gamma / \pi^0 / \eta / \eta', \tau \to \ell \ell \ell, \tau \to \ell h h' \ (\ell = e, \mu; h = \pi, K)$

e⁺e⁻ → τ⁺τ⁻ (Clean Environment)

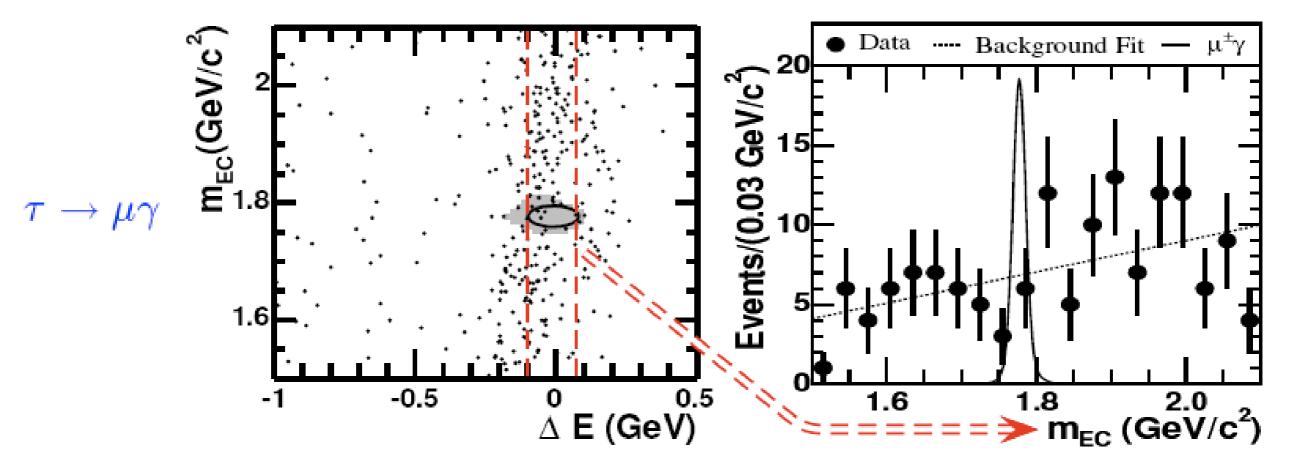
Divide τ -pair event \perp to thrust axis (CM frame) in 2 hemispheres

No signal found ...

Upper Limit:
$$B_{\mathrm{UL}}^{90} = N_{\mathrm{UL}}^{90} / (N_{\tau} \times \varepsilon)$$

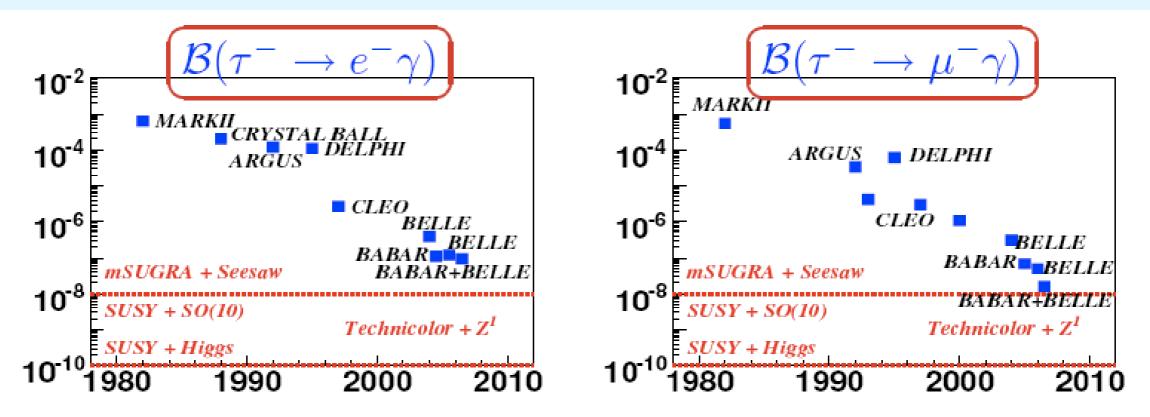
<u>e:</u> high statistics signal MC simulated for different Data-taking periods

$\epsilon = \text{Trigger} \cdot \text{Reco} \cdot \text{Topology} \cdot \text{PID} \cdot \text{Cuts} \cdot \text{Signal-Box}$						
	90%	70%	70%	50%	50%	50%
Cumulative:						
	90%	63%	44%	22%	11%	~5%


- $\begin{array}{ll} \label{eq:starses} & \label{eq:starses} \blacksquare & \sigma_{\tau^+\tau^-}(10.6\,{\rm GeV}) \sim 0.9\;nb,\, \mathcal{L} \sim 339\,\textit{fb}^{-1} \;\textit{(BABAR Summer 2006)} \\ & \qquad \Rightarrow N_\tau = 2 \times \mathcal{L} \times \sigma_{\tau^+\tau^-} \sim 6.0 \times 10^8 \end{array}$
- \square N⁹⁰_{UL}: 90% C.L. Upper Limit for (N_{obs}, N_{bkg}) from Data

Naive Sensitivity : $N_{\rm UL}^{90} = 2.3 \times \sqrt{N_{\rm bkg}}$, $N_{\rm bkg} \sim \mathcal{O}(1) \Rightarrow B_{\rm UL}^{90} \sim \mathcal{O}(10^{-7})$

$$\tau
ightarrow \ell \gamma$$


$$\begin{array}{ccc} \tau^- \rightarrow & \mu^- \gamma & e^- \gamma \\ \hline \varepsilon \ (\%) & 7.4 & 4.7 \end{array}$$

■ $\tau^{\pm} \rightarrow \ell^{\pm} \gamma$: Background rate from PDF($m_{\rm EC}$) in $\pm 2\sigma$ band in ΔE

Last 25 years ...

Channel	BABAR		Belle		BABAR & BELLE	
	$B_{ m UL}^{90}~(10^{-8})$	$\mathcal{L}(fb^{-1})$	$B_{ m UL}^{90}~(10^{-8})$	$\mathcal{L}(fb^{-1})$	$B_{\rm UI}^{90}((10^{-8}))$	$\mathcal{L}(fb^{-1})$
$\tau^{\pm} ightarrow e^{\pm} \gamma$	11	232.2	12	535.0	9.4	767.2
$ au^{\pm} ightarrow \mu^{\pm} \gamma$	6.8	232.2	4.5	535.0	1.6	767.2
$\tau^{\pm} \rightarrow e^{\pm} \pi^0$	13	339.0	8.0	401.0	4.4	740.0
$ au^{\pm} ightarrow \mu^{\pm} \pi^0$	11	339.0	12	401.0	5.8	740.0
$\tau^{\pm} \rightarrow e^{\pm} \eta$	16	339.0	9.2	401.0	4.5	740.0
$ au^{\pm} ightarrow \mu^{\pm} \eta$	15	339.0	6.5	401.0	5.1	740.0
$\tau^{\pm} ightarrow e^{\pm} \eta'$	24	339.0	16	401.0	9.0	740.0
$ au^{\pm} ightarrow \mu^{\pm} \eta'$	14	339.0	13	401.0	5.3	740.0

Projections to 75 ab⁻¹ Luminosity

$$\begin{array}{c} B_{\mathrm{UL}}^{90} = N_{\mathrm{UL}}^{90}/(N_{\tau} \times \varepsilon) \\ \\ \hline \tau \to \ell \ell \ell \ (\tau \to \ell h h') & \tau \to \ell \gamma \\ \hline Background \ free \ search & Background \ limited \ search \\ \hline N_{\mathrm{UL}}^{90} & 2.3 \times \sqrt{N_{\mathrm{obs}}} \sim \mathcal{O}(1) & \sqrt{\mathcal{L}} \\ B_{\mathrm{UL}}^{90} & \propto 1/\mathcal{L} & \propto 1/\sqrt{\mathcal{L}} \end{array}$$

9 $\tau^{\pm} \rightarrow \mu^{\pm} \gamma$ search:

Baseline: $B_{\rm UL}^{90} \sim 1.2 \times 10^{-7}$ (BaBar expected @ 232.2 fb⁻¹)

Super B-Factory:

 $B_{\rm UL}^{90} < O (10^{-10}) / O (10^{-9})$ no/with Background

Expected Upper Limits

Super B-Factory: Expected 90% CL upper limits on LFV τ decays with 75 ab⁻¹ assuming no signal is found and reducible backgrounds are small (~ O(1) events) and the irreducible backgrounds scale as $1/\mathcal{L}$.

75 ab-1	BR 90%CL UL (x10-9)
$\tau \rightarrow \mu \gamma$	2
$\tau \rightarrow e\gamma$	2
τ→ μμμ	0.2
τ→ eee	0.2
$\tau \rightarrow \mu \eta$	0.4
τ→ eη	0.7
$\tau \rightarrow \ell K^0{}_S$	0.2

