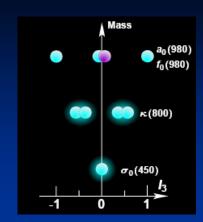
WGIII: spectroscopy

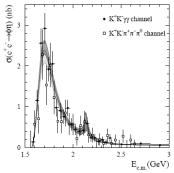
Riccardo Faccini and Antonello Polosa University "La Sapienza" and INFN Rome

> SuperB physics retreat Valencia, 12th Jan 2008

Sessions a retreat

- Tuesday 14:30-16:30
 - Exotica searches in Bottomonium decays
- Tuesday 17:-19:00
 - Bottomonium spectroscopy
- Wednesday 9:30-13:00
 - Charmonium spectroscopy
- Wednesday 14:30-16:00
 - Joint with Tau-WG
- Wednesday 16:30-19:00
 - Light meson spectroscopy

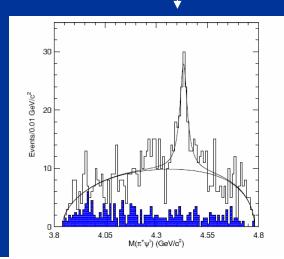

Few presentations, lots of interesting discussions

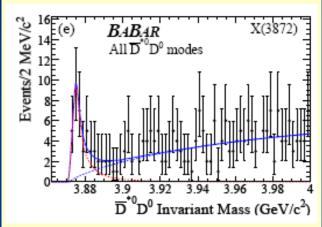

The physics case in few words

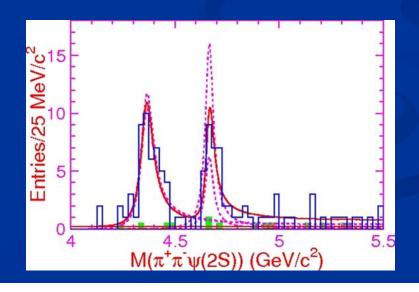
- There are indications that strong interactions do not only form mesons and baryons, but also other forms of aggregation
 - A major step forward in the understanding of nature
 - Converting these indications into a solid set of measurements is within the reach of SuperB
 - Twofold task:
 - Discriminate among possible interpretations (regular mesons, molecules, tetraquarks, hybrids,...)
 - Complete the picture
 - Very large number of missing states
 - Operatively we will assume the tetraquark model is correct and explore the observables that are unique to SuperB
- There are new physics models that predict Higgs bosons at masses below 2m_b to have escaped LEP searches.
 - We will explore which are the search channels that require SuperB statistics

Light mesons

- The scalar nonet is the best candidate for tetraquarks so far
 - Strengthened by recent dispersion relation studies of BaBar+KLOE data
- Recent BaBar candidate for a 1⁻ excitation: Y(2175), observed in ϕf^0
 - Hints for Y \rightarrow KsK π , $\phi \eta$, maybe $\Lambda \Lambda$
 - Need much higher statistics to measure all BFs and conclude it is a tetraquark
- Room for investigating whether the f0(1500) is a glueball?




Charmonium


Most likely tetraquark candidates:

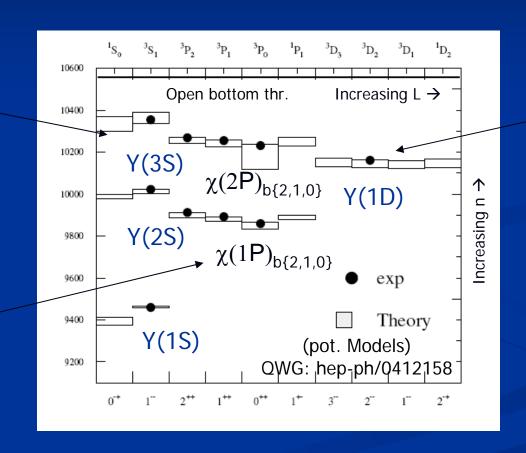
- X(3872/6)
- Y(4360)
- Y(4660) Z(4330)

Low stat!! (and these are the discovery modes)

Charmonium: SuperB observables

- The best way to discriminate between tetraquark and other models are the semileptonic decays
- e.g. X(3872) \rightarrow D_s π^0 ln allowed only by tetraquark: a D*0D0 molecule could only go to D*0 Klv
 - Cabibbo suppressed + experimental challenge (v)
- □ Critical measurements: BFs to two D_(s) mesons
 - Low BF of observable final states → need high statistics

Charmonium: large wealth of states


JPC	Mass	Production	Main decay
0++	3720	γγ, recoil	$\eta_{ m c}\pi$
0++	3832	γγ,recoil	DD
1+-	3750	χ recoil	J/ψπ , ω
1++	3872	B dec	J/ψρ
1+-	3882	χ recoil	J/ψπ , ω
2++	3952	γγ	DD*,J/ψρ
1	3840		
1	3950		

Predicted by tetraquark model – each represents a nonet of states !!!

Bottomonium

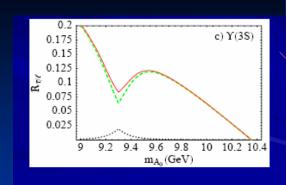
η_b (x3) completely missing

Unconfirmed J assignments of all the χ_{b} s

The large number of missing states is due

2 h_b and 3 D

observed


wave states are

narrow but not

to low individual BFs and large background

8 narrow resonances still missing!

Exotica

- $-Y\rightarrow A \gamma A \rightarrow \tau \tau$
 - Two possible experimental approaches:
 - Measure $R=BF(Y \rightarrow \tau \tau n \gamma)/BF(Y \rightarrow lln \gamma)$
 - Tag explicitely the monochromatic photon and the τ -pair
 - Might be systematics limited
- Y→invisible
 - Several modes beyond the SM predict Y to decay to particles which are not observed (typically neutral LSPs)

Do B-Factories already saturate the discovery potential?

Running at different energies

Identified energies of interest:

- Y(3S) run
 - 0.3 ab⁻¹ (<2 months) would already decuplicate the BF sample
- Energy scan in 4-5 GeV range?
 - Produce the plot of $R_c = \sigma(c)/\sigma(l)$, with c=several channels of interest (e.g. $J/\psi \pi \pi$, ...)
 - BES does not reach these energies

Conclusions

- It was a good opportunity to start a very interesting work
- Statistics is a limiting factor in this land
- A one-pager is ready for the document of next week
 - More work is needed (and indicated in the one-pager) to produce a comprehensive document. Time scale ~2-3months?