

INTENSE LASER Irradiation Lab., Ino, Cnr, Pisa

<mark>INO - CNR</mark> Istituto Nazionale di Ottica

CONSIGLIO NAZIONALE DELLE RICERCHE

Laser-plasma acceleration with selfinjection: first electron bunches from the FLAME commissioning test experiment at LNF

Leonida A. GIZZI

Istituto Nazionale di Ottica (INO) CONSIGLIO NAZIONALE DELLE RICERCHE & ISTITUTO NAZIONALE DI FISICA NUCLEARE Sezione di Pisa Laboratori Nazionali di Frascati

Via G. Moruzzi, 1 – 56124 Pisa (Italy)

la.gizzi@ino.it

www: ilil.ino.it

THE NATIONAL INSTITUTE OF OPTICS Istituto Nazionale di Ottica (INO)

U.O.S. INO-CNR

- Firenze, Polo Scientifico Sesto Fiorentino
- Trento, "BEC centre"
- Pisa, "Adriano Gozzini"
 Area della Ricerca CNR di Pisa
- Napoli, Area della Ricerca CNR di Pozzuoli

www.ino.it

Lecce, Arnesano

The Intense Laser Irrad. Lab @ INO-Pisa

PEOPLE

- Antonio GIULIETTI (CNR)*
- Leonida A. GIZZI (CNR)*
- Danilo GIULIETTI (Univ. Pisa, CNR)*
- Luca LABATE (CNR)*
- Petra KOESTER (CNR & Univ. of Pisa)*
- Carlo A. CECCHETTI (CNR)*,
- Giancarlo BUSSOLINO (CNR)
- Gabriele CRISTOFORETTI (CNR)
- Moreno VASELLI (CNR-Associato)*
- Walter BALDESCHI (CNR)
- Antonella ROSSI (CNR)
- Tadzio LEVATO (now at LNF-INFN)
- Naveen PATHAK (UNIPI & CNR), PhD

* Also at INFN

CNR - DIPARTIMENTO MATERIALI E DISPOSITIVI (Dir. M. Inguscio) Progetto: OPTICS, PHOTONICS AND PLASMAS (Resp. S. De Silvestri) Unit (Commessa): HIGH FIELD PHOTONICS (Head: Leo A. Gizzi) >High field photonics for the generation of ultrashort radiation pulses and high energy particles;

>Development of broadband laser amplifiers for stategic studies on Inertial Confinement Fusion;

CONTENTS

- INTRODUCTION
- ULTRAINTENSE LASERS: CURRENT STATUS
- PLASMONX Project: MOTIVATION AND OBJECTIVES
- FLAME INSTALLATION: OVERVIEW AND STATUS
- TEST EXPERIMENT ON LPA w. SELF-INJECTION
- CONCLUSIONS

MINIATURE ACCELERATORS?

- CONVENTIONAL ACCELERATORS:
 - ELECTRON GUN (LASER PHOTOCATHODE) + ACCELERATING CAVITIES (RF)
 - accelerating fields \approx 15 MV/m
- LASER-PLASMA ACCELERATORS
 - PLASMA MEDIUM (GAS ...) + ELECTRON PLASMA WAVES (INTENSE LASER)
 - Accelerating fields > tens of GV/m

BOAT / LASER PULSE

Wake wave/ PLASMA WAVE

WHY A PLASMA?

- no structural limits to the accelerating electric fields;
- electron plasma waves (e.p.w) fit requirements for particle acceleration:
- intense longitudinal electric fields;
- phase velocity very close to the speed of light;

How to create high amplitude e.p.w. ?

- Ponderomotive force;
- Coulomb force;
- Use charged particles or laser pulses;

LASER WAKEFIELD

Electron plasma wave excitation by laser wakefield

BEYOND CLASSICAL WAKEFIELD

At ultra-short, ultra intense laser conditions:

- Laser pulse self-focuses and self-compresses and creates an electron evacuated cavity (bubble)* surrounded by a high density wall of electrons;
- At sufficiently high density at the walls, electrons are driven at the back of the wall and <u>injected in the bubble</u> until the density of the injected electrons equals the wall density;
- The faster the process the higher the <u>localisation</u> of the injected electrons, with consequent reduction of energy spread.
- Self-injection, however, is non-linear and hard to control => <u>reproducibility</u> and energy stability is limited;
- All optical schemes^{**} can be used to control injection to a significant degree;
- External injection using high-quality electron bunches can ultimately be used to boost energy while preserving quality (energy spread, emittance, charge etc. ...)
- Deal with limiting **d-**factors: **d**iffraction, **d**ephasing, **d**epletion ...

TOWARDS HIGHER QUALITY BEAMS

Ultrashort, ultraintense laser pulses can drive a new, highly non linear regime with a powerful injection mechanism that leads to a reduced energy spread.

S.P.D. Mangles et al.,
Nature, 431, 535 (2004);
C.G.R. Geddes et al.,
Nature, 431, 538 (2004);
J. Faure et al., Nature,
431, 541 (2004);

Since 2004, systematic production of electron bunches with energy in the hundreds of MeV range and moderate energy spread (5-10%):

Miura, Appl. Phys. Lett. 86, 251501 (2005)
Hsieh, Phys. Rev. Lett. 96, 095001 (2006)
Hidding, Phys. Rev. Lett. 96, 105004 (2006)
Hosokai, Phys. Rev. E 73, 036407 (2006)
Giulietti et al., Phys. Rev. Lett. 101, 105002 (2008)

Most recent results from LBL LOASIS group: 1 GeV

"GeV electron beams from a cm-scale accelerator," by W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Toth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, and S.M. Hooker, October 2006 issue of Nature Physics.

POTENTIAL APPLICATIONS OF LASER-DRIVEN GeV e⁻

• Radiotherapy with tunable, high-energy electrons, including IORT

DeRosiers, "150-250 MeV electron beams in radiation therapy,"Phys. Med. Biol. 45, 1781 (2000) Glinec, "Radiotherapy with quasi-monoenergetic laser-plasma accelerators,"Med. Phys. 33, 155 (2006)

•Table-top, fs X-ray FELs

NO-CNR

STITUTO

Nakajima, "Toward a table-top free-electron laser,"Nature Phys. 4, 846 (2008)

\bullet $\gamma\text{-ray}$ radiography for bio-medical and materials science

Glinec, "High-resolution γ -ray radiography produced by a laser-plasma electron source," Phys. Rev. Lett. 94, 025003 (2005); (MAMBO-BEATS);

• Efficient on-site production of radio-isotopes;

Reed, "Efficient initiation of photonuclear reactions using quasi-monoenergetic electron beams from laser wakefield acceleration," J. Appl. Phys. 102, 073103 (2007); Giulietti et al., Phys. Rev. Lett. 101, 105002 (2008)

• Compact injectors for HEP accelerators

•On-site production of site production of short short-lived isotopes for medical imaging

•All-optical, tunable, monochromatic (Thomson-scattering) X-ray source for medical applications;

Pursue LPA for

a) establishing LPA for future high energy accelerators;

• Seek conditions for "all-optical" ultra-high gradient, multi-GeV acceleration under controlled laser-plasma interaction conditions;

• Also, explore "hibrid" schemes to enhance output of sources based upon existing conventional accelerators;

b) bio-medical applications of table-top configurations;

• Explore the physics of LPA at <u>TW level</u> and 10s of MeVs and find optimum conditions for efficient acceleration with long term operation and stable averaged output;

PLASma acceleration and MONochromatic X-ray radiation

COMBINING THE HIGH BRIGHTNESS LINAC ACCELERATOR OF THE *SPARC* PROJECT WITH AN ULTRA-SHORT, HIGH ENERGY, >250TW *FLAME* LASER.

Scheduled activity:

• Linear and Nonlinear Thomson scattering X/γ -ray sources: backscattering of the laser pulse on both LINAC e-beams and LWFA e-beams;

•LWFA with both externally injected and self-injected beams;

• Intense laser-matter interactions, proton acceleration.

INFN

INO-CNR Istituto Nazionale di Ottica

PLASMONX PROJECT UNITS

L.I.F.E. AREA AT LNF-FRASCATI

L.I.F.E. AREA AT LNF-FRASCATI

A dedicated area for LINAC and LASER combined operations

INFN

INO-CNR Istituto Nazionale di Ottica

SPARC LINAC at LNF

-	-
Parameter	value
Bunch charge(nC)	$1 \div 2$
Energy (MeV)	$28 \div 150$
Length (ps)	$15 \div 20$
$\epsilon_{nx,y}$ (mm-mrad)	$1 \div 5$
Energy spread(%)	$0.05^{1} \div 0.2$
Spot size at interaction point rms (mm)	$5 \div 10$

Frascati Laser for Acceleration and Multi-disciplinary Experiments

INFN

www.ino.it

Frascati Laser for Acceleration and Multi-disciplinary Experiments

INFN

FLAME LAB: OVERVIEW

LAB INCLUDES LASER, RADIOPROTECTED TARGET AREA FOR LASER-TARGET EXPERIMENTS AND TRANSPORT OF LASER TO SPARC FOR LASER-LINAC OPERATION

THE FLAME LAB. – HISTORY 1/1

27th March 2007 – beginning of construction

23rd June 2008 -

Building completed

INO-CNR Istituto Nazionale di Ottica

FLAME – HISTORY 2/2

12th March 2009 – delivery of laser 18th May 2009 – start of Installation of clean room

> 10th June 2009 – "Cold" laser installation

INO-CNR Istituto Nazionale di Ottica

FLAME – RECENT PAST

October 2009 – Laser wiring and connections completed Oscillator start-up;

December 2009 – 1st vacuum transport line completed;

> July 2010 -Laser at target point;

FLAME: A FEW CHALLENGES ...

- FLAME to operate a 250 TW, 10 Hz system
- Basic issues/challenges (project driven):
 - •Pulse contrast (>10¹⁰)
 - •Pulse duration (<30 fs)
 - Performance stability to compare with LINAC

www.ino.i

•Mechanical stability (2 µm at focal spot)

CRITICAL ISSUES

BANDWIDTH 1/2

Ultrashort pulse duration with chirped pulse amplification requires large bandwidth gain medium;

Ti:Sa combined with bandwidth and phase control devices (dazzler, mazzler) are used to overcome gain narrowing and keep flat phase distribution over a 70-80 nm bandwidth;

Optical parametric CPA is rapidly being developed for a new generation of ultra-high bandwidth (up to 3x Ti:Sa) front-end;

CRITICAL ISSUES

BANDWIDTH 2/2

NFN

INO-CNR

ISTITUTO Nazionale di Ottica

PULSE COMPRESSION

CRITICAL ISSUES

CONTRAST

Temporal contrast (ASE) in excess of 10 orders of mag. required for peak intensities on target of $>10^{20}$ W/cm².

Established techniques include

- electro-optic devices (Pockel cells) for prepulse reduction;
- moderate gain in front-end and saturable amplifier for ASE management;
- Other advanced techniques (e.g cross-polarized wave generation) again for front-end contrast enhancement;

ASE CONTRAST: ACCEPTANCE TEST (DEC '08)

NEW CONTRAST MEASUREMENTS AT LNF

Contrast level@200mJ well within specs;
 ASE contrast at natural pulse duration compares with plasma mirror!

CRITICAL ISSUES

BEAM QUALITY 1/2

www.ino.it

A high beam quality is required to achieve high laser intensity in the focal spot.

Strehl ratio (energy in the focal spot/total energy) and M² (deviation from the Gaussian shape) are used to measure beam quality;

Multi-pass and regenerative amplification implies large number of reflections off mirrors, passes through optics, gain medium and air;

Small imperfections of optics and air turbulence impose whitespectrum spatial scale distortions of the phase-front.

INO-CNR

ISTITUTO Nazionale di Ottica

PHASE FRONT CHARACTERIZATION

INFN

INO-CNR ISTITUTO NAZIONALE DI OTTICA

PHASE FRONT CHARACTERIZATION

Correction required for optimum performance

CRITICAL ISSUES

BEAM QUALITY 2/2

- Active spatial phase control technique can be used to correct moderate distortions;
- Sensors are used to measure intensity and phase map of the beam;
- Deformable mirrors are used to correct the measured wave front distortions in a close loop;

FINAL AMPLIFIER: FULL ENERGY

Final amplifier operational with all YAG pump lasers

SUMMARY OF FLAME LASER

Summary of performance (to date)

- Energy before compression @ 7.3 J
- Vacuum compressor transmission > 70%
- Pulse duration down to 23 fs
- ASE Contrast ratio: better than 2x10⁹
- Pre-Pulse Contrast better than 10⁸
- RMS Pulse Stability @ 0.8 %
- Pointing Stability (incl. path) < 2µrad
- Phase front correction needed;

Full vacuum compression planned before end of the year;

NO-CNR

TREND IN ULTRAINTESE LASERS

Laser technology is rapidly progressing towards higher peak power × higher repetition rate:

Systems undergoing commissioning w.w. include (e.g.):

- 1.3 PW, 30 fs, 1 Hz repetition rate (LBNL, USA) => 10 GeV e⁻
- 1 PW, < 30 fs, 1 Hz repetition rate (CLPU, Salamanca, Spain)
- 10 PW \approx 500 fs (CLF, Rutherford Appleton Lab, UK)

Still based upon Chirped Pulse Amplification and using flash-lamp pumped, frequency doubled Nd:YAG pump lasers. Future: DPSSL?

ELI Pillars (Czech Rep., Romania, Hungary...)

LASER-PLASMA ACCELERATION WITH SELF-INJECTION A TEST EXPERIMENT (S.I.T.E.)

SELF-INJECTION – CONCEPT

ΙΝΓΝ

SELF-INJECTION TEST EXPERIMENT

www.ino.it

• Nonlinear 3D regime (bubble) ^a

INFN

INO-CNR Istituto Nazionale di Ottica

MAIN EXPERIMENTAL PARAMETERS

Main set up parameters

$L_{gas jet} [mm]$	$n_e \; [{ m e}/{ m cm^3}]$	τ [fs]	$I_0 \; \mathrm{[W/cm^2]}$	$w_0 \; [\mu { m m}]$
4	$3\cdot 10^{18}$	30	$5.2\cdot 10^{19}$	16

Nonlinear 3D regime (bubble) ^a

See: L.A. Gizzi et al., EPJ-ST, 175, 3-10 (2009)

INFN

INO-CNR ISTITUTO NAZIONALE DI OTTICA

Particle-in-cell simulations

www.ino.it

Numerical simulations by C. Benedetti for self-injection test experiment at FLAME

HIGHER ACCELERATION GRADIENTS

Main set up parameters

$L_{gas jet} [\rm mm]$	$n_e \; [{ m e/cm^3}]$	τ [fs]	$I_0 \; \mathrm{[W/cm^2]}$	$w_0 \; [\mu { m m}]$
4	$3\cdot 10^{18}$	30	$5.2\cdot 10^{19}$	16

Aladyn numerical simulations (di C. Benedetti et al.,)

Strong self-focusing occurs on a longitudinal scalelength of approx. $50 \mu m$ leding to a 10-fold increase of the local intensity

NFN

INJECTION MECHANISM AT <u>TW LEVEL</u>

Aladyn numerical simulations (di C. Benedetti et al.,)

➢ In these conditions, trapping of electrons may be explained invoking transverse wave breaking due to the curved plasma wave front. This is expected to occur at reduced threshold values compared to the longitudinal wave breaking process. Aladyn simulations indeed suggest this scenario:

In this case, the much longer pulse duration (65fs) compared to the ideal bubble-like regime (\approx 10 fs), leads to interaction of the accelerated electrons with the the laser pulse itself;

NFN

ELECTRON BEAM at TW level

- Upgrade in progress to reach IORT energy range 15-30 MeV.

FLAME TARGET AREA (FOR S.I.T.E.)

FLAME TARGET AREA (SITE)

INFN U

VERT. AND HORIZ. SHIELDING

MAIN BEAM OPTICS IN PLACE

45 AND 15° TURNING MIRROR MOUNTED

FOCUSING LASER

1 m focal length, 7", 15° Off Axis Parabola (SORL)

LASER AT TARGET CHAMBER CENTER

Pointing stability at TCC

8

6

4

2

0

Count

	Centroid Y	Centroid X
Minimum	160,89799	172,12
Maximum	166,22099	179,614
Points	39	39
Mean	162,9351	175,0372
Median	162,995	175,244
RMS	162,93927	175,04455
Std Deviation	1,18026	1,6241748
Variance	1,3930138	2,6379437
Std Error	0,18899286	0,26007611

LATEST: GAS-JET TARGET IN PLACE

August 2010: first plasma with f/10 OAP

Wide-field top view image of the plasma -(Thomson scattering imaging)

INFN

FIRST ELECTRONS AT SCREEN

October 2010: first MeV e⁻ at low laser power

Basic Parameters for this dataset: →Laser Energy before compression <u>550mJ</u> →Laser pulse duration <<u>40fs</u> (FWHM) →Off-axis Parabola 1m focal length →Backing Pressure 17bar of N → 4 mm length gas-jet

LASER POWER ~ 7 TW

MAX LASER POWER will be~ 250 TW

Only 1 over 10 green pump laser are used in this case! No focal spot and pulse duration optimization were performed!!

FIRST ELECTRONS AT SCREEN

October 2010: first MeV e⁻ at low laser power

Basic Parameters for this dataset: →Laser Energy before compression <u>550mJ</u> →Laser pulse duration <<u>40fs</u> (FWHM) →Off-axis Parabola 1m focal length →Backing Pressure 17bar of N → 4 mm length gas-jet

LASER POWER ~ 7 TW

MAX LASER POWER will be~ 250 TW

Only 1 over 10 green pump laser are used in this case! No focal spot and pulse duration optimization were performed!!

ELECTRON ENERGY

Performed using stack of Radiochromic films (RCF)

REVIEW OF SCIENTIFIC INSTRUMENTS 76, 053303 (2005)

www.ino.it

SHEEBA: A spatial high energy electron beam analyzer

Marco Galimberti,^{a)} Antonio Giulietti,^{b)} Danilo Giulietti,^{c)} and Leonida A. Gizzi^{b)}

ELECTRON ENERGY

Performed using stack of Radiochromic films (RCF)

LOW RESOLUTION SPECTROMETER

PRELIMINARY SPECTRUM

- Finalize characterization of FLAME at full power: transport, compression, OAP focusing (no target), far field, contrast, width, phase distortion, measurements ... prepare for adaptive optics;
- **Complete set up** and test of HW and SW control and diagnostics for self-injection test experiment;
- **Complete registration** for radioprotection, safety and control of operations;
- S.I.T.E. Laser on (gas-jet) target at >50 TW level electron spectra with magnetic spectrometer.

MULTI-STAGING CONCEPT

Custom-made OAP – 1: regular OAP, 2: Annular OAP, 3: Annular OAP Relative motion along axis to match time of arrival on each gas-jet

SUMMARY

www.ino.it

- FLAME: an entirely new lab for LPA is now operational
- Requirements on peak power, contrast, stability are challenging;
- Measurements to date show that parameters are within specs;
- Radiation protection measures in place awaiting authorization
- Rapidly approaching self-injection LPA measurements

INO-CNR ISTITUTO NAZIONALE DI OTTICA

SELF-INJECTION MEASUREMENTS: PEOPLE

www.ino.it

T. Levato, L. Labate, N. Pathak, F. Piastra, C.A.Cecchetti, D.Giulietti, L.A. Gizzi ILIL-INO, CNR, Pisa, Italy, Sez. INFN, Pisa, Italy, LNF, INFN, Frascati, Italy, Dip. di Fisica, Univ. di Pisa, Italy,

N. Drenska, R. Faccini, S. Martellotti, V. Lollo, P. Valente, Sez. INFN Roma-1, Roma, Italy, Dip. Fisica, Univ. La Sapienza, Roma, Italy,

C. Benedetti LOASIS Group, LBNL, Berkeley, USA

INO-CNR Istituto Nazionale di Ottica

CONTACT PERSONS FOR FLAME COMMISSIONING

TECHNICAL MANAGER

Giampiero DI PIRRO (LNF) SUBSYSTEMS (Contact persons) Laser Installation Leonida A. GIZZIand Danilo GIULIETTI ((DIP. FIS. UNIPI, IPCF-CNR, INFN-PI, LNF) Laser operations and control command Tadzio LEVATO(LNF) and Luca LABATE (CNR & INFN-PI) FLAME-SPARC interfaces – Laser, Optical, Electronics, Mechanics **Giancarlo GATTI** FLAME systems: clean room, water cooling and air conditioning Luigi PELLEGRINO(LNF, Servizio Impianti a Fluido della DT) **Electricity network** Ruggero RICCI (LNF, Servizio Impianti Elettrici della DT) Ethernet network Massimo PISTONI (LNF) FLAME software interfaces Elisabetta PACE (LNF) Beam Transport air+ vacuum - FLAME buildings Valerio LOLLO (LNF), Alberto CLOZZA (LNF, Servizio Vuoto della DA) & Andrea GAMUCCI (CNR & INFN-PI) SAFETY Sandro VESCOVI (LNF), Tadzio LEVATO (LNF), Carlo VICARIO(LNF) **SAFETY** (Radiation protection) Adolfo ESPOSITO (LNF) FLAME Target Area - laser beams (main and probe) control, focusing and diagnostics Luca LABATE (CNR & INFN-PI) FLAME Target Area - test experiments diagnostics and remote control Carlo A. CECCHETTI (LNF & IPCF-CNR Pisa) FLAME web site and outreach Leonida A. GIZZI & Luca LABATE Logistics Oreste CERAFOGLI (LNF, Servizio Edilizia della DT) **Technical and Engineering support** Luciano CACCIOTTI (LNF)

INO-CNR Istituto Nazionale di Ottica

COMCLUSIONS

FLAME laser operational

FLAME target area operational

First multi-100MeV electrons from self-injection

ΙΝΓΝ

SOMMARIO

www.ino.it

Marzo 2007 Inizio lavori di costruzione

Ottobre 2010 Primi bunch di elettroni

- *FLAME*: STATUS
- TEST EXPERIMENT ON LPA (SELF-INJECTION)CONCLUSIONS