Charged dark matter in supersymmetric Twin Higgs models

based on [2202.10488] by Marcin Badziak, Giovanni Grilli di Cortona, Keisuke Harigaya and MŁ

Michał Łukawski

Faculty of Physics University of Warsaw

14.07.2022

Summary

1 Hierarchy problem

2 Twin Higgs

3 Twin stau as DM candidate

Hierarchy problem

In SM
$$m_h^2=(m_h^0)^2+\delta m_h^2$$
:
$$\delta m_h^2=\frac{3}{4\pi^2}\Big(-y_t^2+\frac{g^2}{4}+\frac{g'^2}{8\cos^2\theta_W}+\lambda\Big)\Lambda^2$$

Higgs mass in Standard Model (SM) is not natural, $m_h \ll \Lambda_{
m cut-off}$

Higgs mass in Standard Model (SM) is not even technically natural - no reason to believe that any hierarchy between m_h and new physics should hold.

Hierarchy problem

In SM
$$m_h^2 = (m_h^0)^2 + \delta m_h^2$$
:

$$\delta m_h^2 = \frac{3}{4\pi^2} \left(-y_t^2 + \frac{g^2}{4} + \frac{g'^2}{8\cos^2\theta_W} + \lambda \right) \Lambda^2$$

Higgs mass in Standard Model (SM) is not natural, $m_h \ll \Lambda_{\text{cut-off.}}$

Higgs mass in Standard Model (SM) is not even technically natural - no reason to believe that any hierarchy between m_h and new physics should hold.

Hierarchy problem

In SM
$$m_h^2=(m_h^0)^2+\delta m_h^2$$
:
$$\delta m_h^2=\frac{3}{4\pi^2}\Big(-y_t^2+\frac{g^2}{4}+\frac{g'^2}{8\cos^2\theta_W}+\lambda\Big)\Lambda^2$$

Higgs mass in Standard Model (SM) is not natural, $m_h \ll \Lambda_{\rm cut-off}$.

Higgs mass in Standard Model (SM) is not even technically natural - no reason to believe that any hierarchy between m_h and new physics should hold.

- 1. double the particle content adding twin sector (in particular second higgs H^\prime)
- 2. impose Z_2 symmetry interchanging particles between sectors
- 3. the scalar potential is SU(4) invariant due to Z_2 symmetry

$$V(\mathcal{H}) = -m_{\mathcal{H}}^2 \left(H^2 + H'^2 \right) + \lambda \left(H^2 + H'^2 \right)^2 = -m_{\mathcal{H}}^2 \mathcal{H}^{\dagger} \mathcal{H} + \lambda \left(\mathcal{H}^{\dagger} \mathcal{H} \right)$$

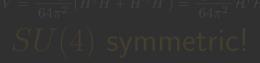
- 4. spontaneous symmetry breaking of $SU(4) \to SU(3)$ generates SM Higgs as one of Nambu-Goldstone bosons
- 5. Quadratically divergent gauge contributions to the potential

$$\delta V = rac{gR - g^2}{64\pi^2}(H^\dagger H + H'^\dagger H') = rac{gg^2 R^2}{64\pi^2}\mathcal{H}^\dagger SU(4)$$
 symmetric!

- 1. double the particle content adding twin sector (in particular second higgs H^\prime)
- 2. impose Z_2 symmetry interchanging particles between sectors
- 5. The scalar potential is SU(4) invariant due to Z_2 symmetry $V(\mathcal{U}) = -m^2 (H^2 + H'^2) + V(H^2 + H'^2)^2 = -m^2 \mathcal{U}^{\dagger}\mathcal{U} + V(\mathcal{U}^{\dagger}\mathcal{U})$
 - $V(\mathcal{H}) = -m_{\mathcal{H}}^2 (H^2 + H'^2) + \lambda (H^2 + H'^2)^2 = -m_{\mathcal{H}}^2 \mathcal{H}^{\dagger} \mathcal{H} + \lambda (\mathcal{H}^{\dagger} \mathcal{H})$
- 4. spontaneous symmetry breaking of $SU(4) \to SU(3)$ generates SM Higgs as one of Nambu-Goldstone bosons
- 5. Quadratically divergent gauge contributions to the potential

- 1. double the particle content adding twin sector (in particular second higgs H')
- 2. impose Z_2 symmetry interchanging particles between sectors
- 3. the scalar potential is SU(4) invariant due to Z_2 symmetry

$$V(\mathcal{H}) = -m_{\mathcal{H}}^{2} (H^{2} + H'^{2}) + \lambda (H^{2} + H'^{2})^{2} = -m_{\mathcal{H}}^{2} \mathcal{H}^{\dagger} \mathcal{H} + \lambda (\mathcal{H}^{\dagger} \mathcal{H})^{2}$$


- 4. spontaneous symmetry breaking of $SU(4) \to SU(3)$ generates SM Higgs as one of Nambu-Goldstone bosons
- Quadratically divergent gauge contributions to the potential

$$\delta V = \frac{9\Lambda^2 g^2}{64\pi^2} (H^\dagger H + H'^\dagger H') = \frac{9g^2\Lambda^2}{64\pi^2} \mathcal{H}^\dagger \mathcal{H}$$

$$SU(4) \text{ symmetric!}$$

- 1. double the particle content adding twin sector (in particular second higgs H')
- 2. impose Z_2 symmetry interchanging particles between sectors
- 3. the scalar potential is SU(4) invariant due to Z_2 symmetry $\frac{2}{3}\left(H^2+H^2\right)+\frac{1}{3}\left(H^2+H^2\right)^2+\frac{1}{3}\left(H^2+H^2\right)^2+\frac{1}{3}\left(H^2+H^2\right)^2$

$$V(\mathcal{H}) = -m_{\mathcal{H}}^{2} (H^{2} + H'^{2}) + \lambda (H^{2} + H'^{2})^{2} = -m_{\mathcal{H}}^{2} \mathcal{H}^{\dagger} \mathcal{H} + \lambda (\mathcal{H}^{\dagger} \mathcal{H})^{2}$$

- 4. spontaneous symmetry breaking of $SU(4) \to SU(3)$ generates SM Higgs as one of Nambu-Goldstone bosons
- 5. Quadratically divergent gauge contributions to the potential

- 1. double the particle content adding twin sector (in particular second higgs H^\prime)
- 2. impose Z_2 symmetry interchanging particles between sectors
- 3. the scalar potential is SU(4) invariant due to Z_2 symmetry $V(\mathcal{H}) = -m_{\mathcal{U}}^2 (H^2 + H'^2) + \lambda (H^2 + H'^2)^2 = -m_{\mathcal{U}}^2 \mathcal{H}^{\dagger} \mathcal{H} + \lambda (\mathcal{H}^{\dagger} \mathcal{H})^2$

$$V(\mathcal{H}) = -m_{\mathcal{H}}(H^{-} + H^{-}) + \lambda(H^{-} + H^{-}) = -m_{\mathcal{H}}H^{+}H + \lambda(H^{+}H)$$

- 4. spontaneous symmetry breaking of $SU(4) \to SU(3)$ generates SM Higgs as one of Nambu-Goldstone bosons
- 5. Quadratically divergent gauge contributions to the potential

$$\delta V = \frac{9\Lambda^2 g^2}{64\pi^2} (H^\dagger H + H'^\dagger H') = \frac{9g^2\Lambda^2}{64\pi^2} \mathcal{H}^\dagger \mathcal{H}$$

SU(4) symmetric!

Twin Higgs models

General Twin Higgs potential could be written

$$V(H, H') = \lambda (H^2 + H'^2)^2 - m_{\mathcal{H}}^2 (H^2 + H'^2) + \Delta \lambda (H^4 + H'^4) + \Delta m^2 H^2$$

In minimal setting 4 parameters, but we know mass of Higgs m_h and EW vev v

We have only two parameters v'/v and mass of the heavy higgs $m_{\mathcal{H}}$

Twin Higgs models

General Twin Higgs potential could be written

$$V(H, H') = \lambda (H^2 + H'^2)^2 - m_{\mathcal{H}}^2 (H^2 + H'^2) + \Delta \lambda (H^4 + H'^4) + \Delta m^2 H^2$$

In minimal setting 4 parameters, but we know mass of Higgs m_h and EW vev \boldsymbol{v}

We have only two parameters v'/v and mass of the heavy higgs $m_{\mathcal{H}}$.

DM is TH models

- lacksquare twin tau $(m_{ au'}pprox 65-130$ GeV, [1505.07109])
- lacktriangle twin electrons $(m_{e'}pprox 2-5$ MeV [1908.03559])
- \blacksquare twin baryons $(m_{baryon} \approx 5 \text{ GeV}, \text{ [1506.03520]})$

Twin electromagnetism necessarily broken!

Self-interactions of DM are constrained and for self-coupling $g=g_{em}$ we have $m_{\rm DM} \gtrsim 200$ GeV. [1610.04611]

Observation:

SUSY partners obtain large soft masses and can escape that bound, while preserving unbroken $U'_{em}(1)$

DM is TH models

- lacksquare twin tau $(m_{ au'}pprox 65-130$ GeV, [1505.07109])
- lacksquare twin electrons $(m_{e'}pprox 2-5$ MeV [1908.03559])
- twin baryons $(m_{baryon} \approx 5 \text{ GeV}, [1506.03520])$

Twin electromagnetism necessarily broken!

Self-interactions of DM are constrained and for self-coupling $g=g_{em}$ we have $m_{\rm DM} {\gtrsim}~200$ GeV. [1610.04611]

Observation:

SUSY partners obtain large soft masses and can escape that bound, while preserving unbroken $U_{em}^{\prime}(1)$

DM is TH models

- lacksquare twin tau $(m_{ au'}pprox 65-130$ GeV, [1505.07109])
- lacksquare twin electrons $(m_{e'}pprox 2-5$ MeV [1908.03559])
- twin baryons $(m_{baryon} \approx 5 \text{ GeV}, [1506.03520])$

Twin electromagnetism necessarily broken!

Self-interactions of DM are constrained and for self-coupling $g=g_{em}$ we have $m_{\rm DM} \gtrsim 200$ GeV. [1610.04611]

Observation:

SUSY partners obtain large soft masses and can escape that bound, while preserving unbroken $U_{em}^{\prime}(1)$

- In SUSY the potential is fixed by particle content, F-term, and gauge interactions, D-term.
- The SU(4) invariant potential may be generated in two way, F-term SUSY TH [1611.08615] and D-term SUSY TH D-term [1703.02122]
- The main difference is captured by preferable values of $\tan \beta$, which are small (F-term) or large (D-term).
- D-term SUSY TH allows for fine-tuning $\mathcal{O}(10\%)$ while heavy stop (2 TeV) [1703.02]221

- In SUSY the potential is fixed by particle content, F-term, and gauge interactions, D-term.
- The SU(4) invariant potential may be generated in two way, F-term SUSY TH $_{[1611.08615]}$ and D-term SUSY TH D-term $_{[1703.02122]}$
- The main difference is captured by preferable values of $\tan \beta$, which are small (F-term) or large (D-term).
- D-term SUSY TH allows for fine-tuning $\mathcal{O}(10\%)$ while heavy stop (2 TeV) [1703.02122]

- In SUSY the potential is fixed by particle content, F-term, and gauge interactions, D-term.
- The SU(4) invariant potential may be generated in two way, F-term SUSY TH $_{[1611.08615]}$ and D-term SUSY TH D-term $_{[1703.02122]}$
- The main difference is captured by preferable values of $\tan \beta$, which are small (F-term) or large (D-term).
- D-term SUSY TH allows for fine-tuning $\mathcal{O}(10\%)$ while heavy stop (2 TeV) [1703.02122]

- In SUSY the potential is fixed by particle content, F-term, and gauge interactions, D-term.
- The SU(4) invariant potential may be generated in two way, F-term SUSY TH $_{[1611.08615]}$ and D-term SUSY TH D-term $_{[1703.02122]}$
- The main difference is captured by preferable values of $\tan \beta$, which are small (F-term) or large (D-term).
- \blacksquare D-term SUSY TH allows for fine-tuning $\mathcal{O}(10\%)$ while heavy stop (2 TeV) $_{[1703.02122]}$

- 1. assume Z_2 symmetric soft breaking terms and $\tan \beta$
- lightest supersymmetric particle (LSP) is stable
- 3. **twin stau** is Z_2 partner of stau, supersymmetric partner of ta
- $4.\;\;$ I he mass matrix of stau is given by
 - $m_{\tilde{\tau}}^2 = \begin{pmatrix} m_{\tilde{L}_3}^2 + \Delta_{\tilde{\tau}_L} + m_{\tilde{\tau}} & -\mu_{\tilde{\tau}_1} \\ -\mu v y_{\tilde{\tau}_1} \sin(\beta) & m_{\tilde{\tau}_2}^2 \end{pmatrix}$
- 5. for pure $\tilde{\tau}'_{i}$ and $\tilde{\tau}'_{0}$ visible stau is LSP.
- 6. off-diagonal term is larger in twin sector, for mixed state twin sta
 - mav be LSP

- 1. assume Z_2 symmetric soft breaking terms and an eta
- 2. lightest supersymmetric particle (LSP) is stable
- 3. $\,$ twin $\,$ stau is $\,Z_2$ partner of $\,$ stau, $\,$ supersymmetric partner of $\,$ tau
- 4. The mass matrix of stau is given by

$$m_{\tilde{\tau}}^2 = \begin{pmatrix} m_{L_3}^2 + \Delta_{\tilde{\tau}_L} + m_{\tau}^2 & -\mu v y_{\tau} \sin(\beta) \\ -\mu v y_{\tau} \sin(\beta)) & m_{\tilde{e}_3}^2 + \Delta_{\tilde{\tau}_R} + m_{\tau}^2 \end{pmatrix}$$

- 5. for pure $\tilde{\tau}_r'$ and $\tilde{\tau}_D'$ visible stau is LSF
- 6. off-diagonal term is larger in twin sector, for mixed state twin stau

- $oldsymbol{1}$. assume Z_2 symmetric soft breaking terms and aneta
- lightest supersymmetric particle (LSP) is stable
- 3. **twin stau** is Z_2 partner of stau, supersymmetric partner of tau
- $4.\,\,$ The mass matrix of stau is given b

$$m_{\tilde{\tau}}^2 = \begin{pmatrix} m_{L_3}^2 + \Delta_{\tilde{\tau}_L} + m_{\tau}^2 & -\mu v y_{\tau} \sin(\beta) \\ -\mu v y_{\tau} \sin(\beta)) & m_{\tilde{e}_3}^2 + \Delta_{\tilde{\tau}_R} + m_{\tau}^2 \end{pmatrix}$$

- 5. for pure $\tilde{\tau}'_{I}$ and $\tilde{\tau}'_{B}$ visible stau is LSF
- off-diagonal term is larger in twin sector, for mixed state twin state may be ISP

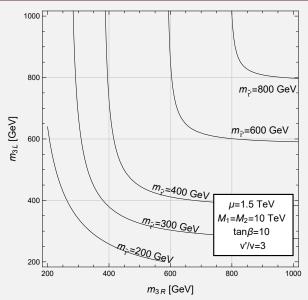
- 1. assume Z_2 symmetric soft breaking terms and $\tan \beta$
- lightest supersymmetric particle (LSP) is stable
- $oldsymbol{3}$. $oldsymbol{\mathsf{twin}}$ $oldsymbol{\mathsf{stau}}$ is Z_2 partner of $oldsymbol{\mathsf{stau}}$, supersymmetric partner of $oldsymbol{\mathsf{tau}}$
- 4. The mass matrix of stau is given by

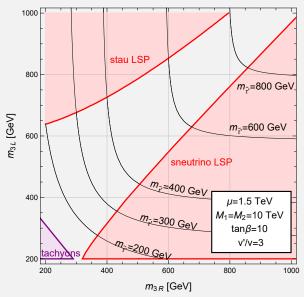
$$m_{\tilde{\tau}}^2 = \begin{pmatrix} m_{L_3}^2 + \Delta_{\tilde{\tau}_L} + m_{\tau}^2 & -\mu v y_{\tau} \sin(\beta) \\ -\mu v y_{\tau} \sin(\beta)) & m_{\tilde{e}_3}^2 + \Delta_{\tilde{\tau}_R} + m_{\tau}^2 \end{pmatrix}$$

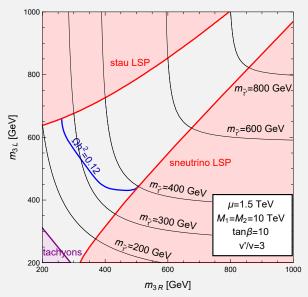
- 5. for pure $ilde{ au}_L'$ and $ilde{ au}_R'$ visible stau is LSP
- off-diagonal term is larger in twin sector, for mixed state twin stau may be LSP

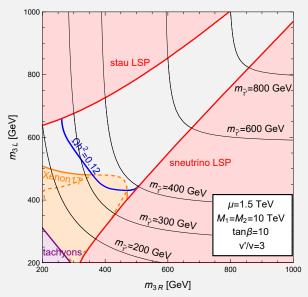
- 1. assume Z_2 symmetric soft breaking terms and an eta
- 2. lightest supersymmetric particle (LSP) is stable
- $oldsymbol{3}$. $oldsymbol{\mathsf{twin}}$ $oldsymbol{\mathsf{stau}}$ is Z_2 partner of $oldsymbol{\mathsf{stau}}$, supersymmetric partner of $oldsymbol{\mathsf{tau}}$
- 4. The mass matrix of stau is given by

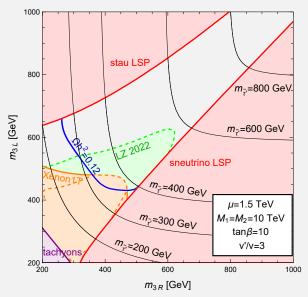
$$m_{\tilde{\tau}}^2 = \begin{pmatrix} m_{L_3}^2 + \Delta_{\tilde{\tau}_L} + m_{\tau}^2 & -\mu v y_{\tau} \sin(\beta) \\ -\mu v y_{\tau} \sin(\beta)) & m_{\tilde{e}_3}^2 + \Delta_{\tilde{\tau}_R} + m_{\tau}^2 \end{pmatrix}$$

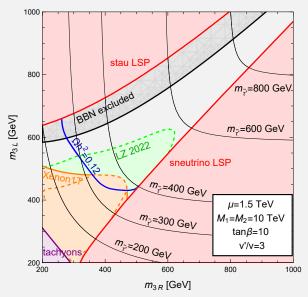

- 5. for pure $\tilde{\tau}_L'$ and $\tilde{\tau}_R'$ visible stau is LSP
- 6. off-diagonal term is larger in twin sector, for mixed state twin stau may be LSP

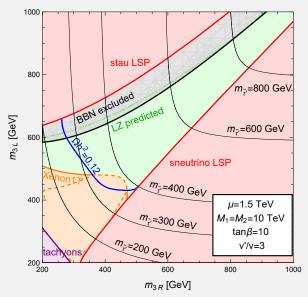

- 1. assume Z_2 symmetric soft breaking terms and an eta
- $^{
 m 2.}$ lightest supersymmetric particle (LSP) is stable
- $oldsymbol{3}$. $oldsymbol{\mathsf{twin}}$ $oldsymbol{\mathsf{stau}}$ is Z_2 partner of $oldsymbol{\mathsf{stau}}$, supersymmetric partner of $oldsymbol{\mathsf{tau}}$
- 4. The mass matrix of stau is given by


$$m_{\tilde{\tau}}^2 = \begin{pmatrix} m_{L_3}^2 + \Delta_{\tilde{\tau}_L} + m_{\tau}^2 & -\mu v y_{\tau} \sin(\beta) \\ -\mu v y_{\tau} \sin(\beta)) & m_{\tilde{e}_3}^2 + \Delta_{\tilde{\tau}_R} + m_{\tau}^2 \end{pmatrix}$$


- 5. for pure $\tilde{\tau}_L'$ and $\tilde{\tau}_R'$ visible stau is LSP
- off-diagonal term is larger in twin sector, for mixed state twin stau may be LSP


14.07.2022

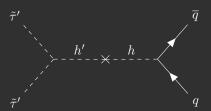




- Supersymmetric Twin Higgs models allow for naturally light Higgs boson, stable under quantum corrections
- in TH models usually one needs to break twin electromagnetism to obtain DM
- in SUSY completions large soft masses allow for LSP charged under twin EM
- twin stau DM will be probed by LZ experiment

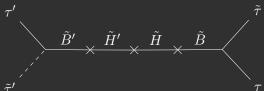
- Supersymmetric Twin Higgs models allow for naturally light Higgs boson, stable under quantum corrections
- in TH models usually one needs to break twin electromagnetism to obtain DM
- in SUSY completions large soft masses allow for LSP charged under twin EM
- twin stau DM will be probed by LZ experiment

- Supersymmetric Twin Higgs models allow for naturally light Higgs boson, stable under quantum corrections
- in TH models usually one needs to break twin electromagnetism to obtain DM
- in SUSY completions large soft masses allow for LSP charged under twin EM
- twin stau DM will be probed by LZ experiment


- Supersymmetric Twin Higgs models allow for naturally light Higgs boson, stable under quantum corrections
- in TH models usually one needs to break twin electromagnetism to obtain DM
- in SUSY completions large soft masses allow for LSP charged under twin EM
- twin stau DM will be probed by LZ experiment

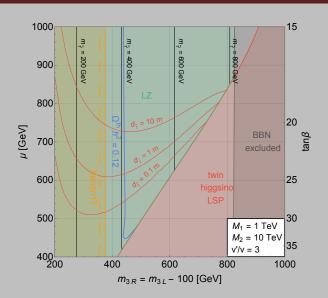
Thank you

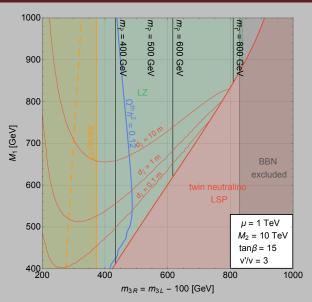
Direct detection


Twin stau can interact with nucleons from visible sector via Higgs portal. The relevant coupling in decoupling limit is

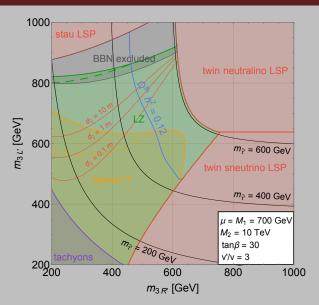
$$\lambda_{h\tilde{\tau}'\tilde{\tau}'} = \frac{g}{m_{W'}} \left[\left(\frac{1}{2} c_{\theta_{\tilde{\tau}'}}^2 - s_W^2 c_{2\theta_{\tilde{\tau}'}} \right) m_{Z'}^2 c_{2\beta} - m_{\tau'}^2 + \frac{m_{\tau'}}{2} \mu \tan \beta s_{2\theta_{\tilde{\tau}'}} \right] \frac{v}{v'}$$

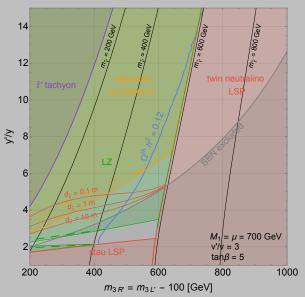
Lifetime of stau


Effective $\tilde{\tau}\tilde{\tau}'^{\dagger}\tau\tau'$ operator from diagram:


$$\frac{1}{M}\tilde{\tau}\tilde{\tau}'^{\dagger}\tau\tau' = \frac{g'^4vv'\varepsilon_{\tilde{H}}m_{\tilde{\tau}}^2(M_1^2 + m_{\tilde{\tau}}^2)}{(M_1^2 - m_{\tilde{\tau}}^2)^2(\mu^2 - m_{\tilde{\tau}}^2)^2}\tilde{\tau}\tilde{\tau}'^{\dagger}\tau\tau'$$

$$d_{\tilde{\tau}} \simeq 2.7 \,\mathrm{m} \left(\frac{m_{\tilde{\tau}}}{300 \,\mathrm{GeV}}\right)^2 \left(\frac{M}{10^6 \,\mathrm{GeV}}\right)^2 \left(\frac{10 \,\mathrm{GeV}}{m_{\tilde{\tau}} - m_{\tilde{\tau}'}}\right)^5 \tag{1}$$


Light Higgsino


Light bino

Light higgsino and bino

Breaking Z_2 in Yukawa

