Extraction of $|V_{ub}|$ from $B \to \pi l \nu$.

Ipsita Ray

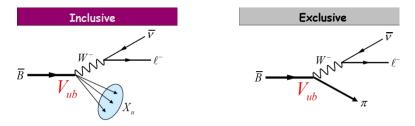
Based on JHEP 07 (2021) 082 In collaboration with Soumitra Nandi, Sunando Patra and Aritra Biswas. On behalf of csb@IITG

Department of Physics IIT Guwahati

July 14, 2022

・ロト ・ 同ト ・ ヨト ・ ヨト

- Precise determinations of the CKM elements necessary to probe the quark mixing mechanism of the Standard Model.
- Important ingredients in the theoretical predictions of several observables in the flavor sector.
- $V_{ub} \rightarrow$ Source of CP violation within the SM \rightarrow Less precisely known.


 $V_{\rm CKM} = \begin{pmatrix} 0.97446 \pm 0.00010 & 0.22452 \pm 0.00044 & 0.00365 \pm 0.00012 \\ 0.22438 \pm 0.00044 & 0.97359^{+0.00010}_{-0.00011} & 0.04214 \pm 0.00076 \\ 0.00896^{+0.00024}_{-0.00023} & 0.04133 \pm 0.00074 & 0.999105 \pm 0.000032 \end{pmatrix}$

[PDG]

イロト イヨト イヨト イヨト ヨー のくの

Measurements of $|V_{ub}|$

• The transition $b \to u l \bar{\nu}$ provides two avenues for determining $|V_{ub}|$ -

- Experimental and theoretical techniques for these two approaches different and largely independent \rightarrow Important cross checks of our understanding.
- Mutual disagreement between exclusive and inclusive measurements.

$$V_{ub}|^{exc} = (3.70 \pm 0.16) \times 10^{-3}, \quad |V_{ub}|^{inc} = (4.25 \pm 0.12^{+0.15}_{-0.14}) \times 10^{-3}, \quad (1)$$

・ロト ・部ト ・ヨト ・ヨト

differ by $\geq 2.2 \sigma$ [PDG, 2020].

$|V_{ub}|$ from inclusive decays

- The theoretical description of inclusive $\bar{B} \to X_u l \bar{\nu}$ decays based on the Heavy Quark Expansion (an expansion in Λ_{QCD}/m_b).
- Total decay rate hard to measure due to the large background from $\bar{B} \rightarrow X_c l \bar{\nu}$ transitions \rightarrow experimental cuts are necessary.
- In regions of phase space where $\bar{B} \to X_c l \bar{\nu}$ decays are suppressed, can't use HQE \to introduce non-perturbative distribution functions(SF).
- Different approaches to model the shape function \rightarrow extracted values of $|V_{ub}|$ model dependent.
- Recent analysis of the inclusive spectra with hadronic-tagging by Belle [arXiv:2102.00020] -

$$|V_{ub}|^{inc} = (4.10 \pm 0.09 \pm 0.22 \pm 0.15) \times 10^{-3}$$
. (2)

$|V_{ub}|$ from exclusive decays

• Exclusive determinations require knowledge of the form factors.

$$\langle \pi(p_{\pi})|V_{\mu}|B(p_{B})\rangle = f_{+}(q^{2}) \Big[p_{B}^{\mu} + p_{\pi}^{\mu} - \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu} \Big] + f_{0}(q^{2}) \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu}$$
(3)

• $f_+(q^2=0) = f_0(q^2=0) \rightarrow$ cancel the divergence at $q^2=0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

$|V_{ub}|$ from exclusive decays

• Exclusive determinations require knowledge of the form factors.

$$\langle \pi(p_{\pi})|V_{\mu}|B(p_{B})\rangle = f_{+}(q^{2}) \Big[p_{B}^{\mu} + p_{\pi}^{\mu} - \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu} \Big] + f_{0}(q^{2}) \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu}$$
(3)

• $f_+(q^2=0) = f_0(q^2=0) \rightarrow$ cancel the divergence at $q^2=0$.

$$\frac{d\Gamma}{dq^2} \left(\bar{B^0} \to \pi^+ l^- \bar{\nu}_l \right) = \frac{G_F^2 |V_{ub}|^2}{24\pi^3 m_{B^0}^2 q^4} \left(q^2 - m_l^2 \right)^2 \left| p_\pi(m_{B^0}, m_{\pi^+}, q^2) \right| \times \left[\left(1 + \frac{m_l^2}{2q^2} \right) m_{B^0}^2 \left| p_\pi(m_{B^0}, m_{\pi^+}, q^2) \right|^2 \left| f_+ \left(q^2 \right) \right|^2 + \frac{3m_l^2}{8q^2} \left(m_{B^0}^2 - m_{\pi^+}^2 \right)^2 \left| f_0 \left(q^2 \right) \right|^2.$$
(4)

• Model-independent parametrization based on general properties of analyticity, unitarity, and crossing symmetry.

Form factor parametrization

- For $\bar{B} \to \pi l \bar{\nu}_l$ decays, $m_l^2 \le q^2 \le (m_B m_\pi)^2$.
- The z expansion \rightarrow maps the kinematically allowed region within a disc of radius |z| < 1.

$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}, \quad t_+ = (m_B + m_\pi)^2 \tag{5}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへの

• Choosing $t_0 = (M_B + M_\pi) (\sqrt{M_B} - \sqrt{M_\pi})^2$ restricts z to |z| < 0.28 \longrightarrow rapid convergence of the expansion.

Form factor parametrization

- For $\bar{B} \to \pi l \bar{\nu}_l$ decays, $m_l^2 \le q^2 \le (m_B m_\pi)^2$.
- The z expansion \rightarrow maps the kinematically allowed region within a disc of radius |z| < 1.

$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}, \quad t_+ = (m_B + m_\pi)^2 \tag{5}$$

- Choosing $t_0 = (M_B + M_\pi) (\sqrt{M_B} \sqrt{M_\pi})^2$ restricts z to |z| < 0.28 \longrightarrow rapid convergence of the expansion.
- BSZ parametrization -

$$f_i(q^2) = \frac{1}{1 - q^2/m_{R,i}^2} \sum_{k=0}^N a_k^i \left[z(q^2) - z(0) \right]^k \tag{6}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 りへの

• Kinematic constraint $\rightarrow a_0^0 = a_0^+$

Form factor parametrization

• BCL parametrization -

$$f_{+}(z) = \frac{1}{1 - q^2/m_{B^*}^2} \sum_{n=0}^{N_z - 1} b_n^+ \left[z^n - (-1)^{n - N_z} \frac{n}{N_z} z^{N_z} \right],\tag{7}$$

$$f_0(z) = \sum_{n=0}^{N_z - 1} b_n^0 z^n \,. \tag{8}$$

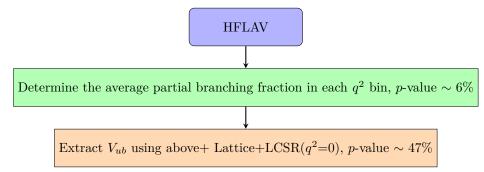
◆□▶ ◆□▶ ◆目▶ ◆目▶ ○目 ○のへで

$$\Sigma(b^{0/+}, N_z) \equiv \sum_{m,n=0}^{N_z} B_{mn} \ b_m^{0/+} b_n^{0/+} \le 1 \,, \tag{9}$$

where the element B_{mn} satisfies $B_{mn} = B_{nm} = B_{0|m-n|}$

• Kinematic constraint \rightarrow replace one FF parameter in terms of the others.

$$b_3^0 = 45.70(b_0^+ - b_0^0) - 12.78b_1^0 - 3.58b_2^0 + 12.85b_1^+ + 3.44b_2^+ + 1.21b_3^+$$
(10)


Inputs for the extraction of $|V_{ub}|$

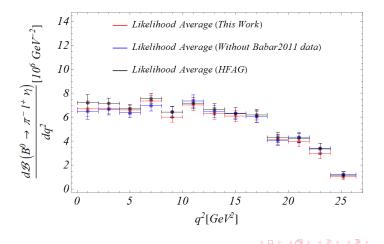
• $\bar{B} \to \pi l \bar{\nu}_l \to$ the most promising decay mode for both experiment and theory.

Four most precise measurements by **BABAR** and **Belle** -

- BABAR untagged $B^0 + B^+$ (6 q^2 bins) [arXiv:1005.3288v2] \rightarrow BaBar(11)
- BABAR untagged $B^0 + B^+$ (12 q^2 bins) [arXiv:1201.1253] \rightarrow BaBar(12)
- Belle untagged B^0 [arXiv:1012.0090] \rightarrow Belle(11)
- Belle hadronic tagged B^0 and B^+ [arXiv:1306.2781] \rightarrow Belle(13)
- Non-perturbative methods for the calculation of form factors:
 - Lattice QCD (LQCD) High q^2 . (RBC-UKQCD/Fermilab-MILC)
- Light-cone sum rules (LCSR) Low q^2 . (arXiv: 1811.00983)

Methodology by HFLAV

Observation : The analysis-method in BaBar(11) considerably different from that of BaBar(12) and Belle. BaBar 2012 significantly better than BaBar 2011.


・ロト ・日 ・ エー・ エー・ うへつ

- A closer look at the data shows that BaBar(11) untagged analysis of the $B^{0,+}$ modes have much lower statistics/yield (almost half) than the one published in the next year: BaBar(12).
- In 2011, the event selection has been optimized over the signal-enhanced region instead of the entire fit region, as was done in 2012.
- The analysis in 2011 uses only a subset of the full BaBar data-set.
- MILC also pointed out that BaBar (2011) is at odds with the rest.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへの

Comparison of the average q^2 spectrum.

Likelihood Average (HFLAV) ~ 6%, Average (This work) ~ 1%, Average (Dropping BaBar(11) ~ 24.8%.

Ipsita Ray ICHEP 2022

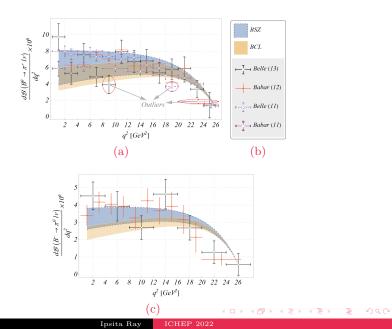
Results with the new Lattice + LCSR inputs

22 data points (9 from LCSR, 13 from Lattice (3 for each of $f_{+,0}$ from UKQCD, 4 for f_+ and 3 for f_0 from MILC)

Parameters	Our Avg. q^2 spec. w/o BaBar(11)	Our Avg. q^2 spec.	Our Avg. q^2 spec. w/o BaBar(11)
	+ New Lattice & LCSR	+ New Lattice & LCSR	+ New Lattice & LCSR
	+ BaBar(11) re-introduced		
	(p value = 0.75%)	(p value = 20.9%)	(p value = 31%)
$V_{ub} imes 10^3$	3.78(13)	3.78(13)	3.89(14)
b_0^+	0.410(12)	0.410(12)	0.408(12)
b_1^+	-0.526(44)	-0.526(44)	-0.561(46)
b_2^+	-0.39(13)	-0.39(13)	-0.40(13)
b_3^+	0.59(24)	0.59(24)	0.59(25)
b_{0}^{0}	0.540(16)	0.540(16)	0.536(16)
b_{1}^{0}	-1.617(66)	-1.617(66)	-1.647(66)
b_2^0	1.294(146)	1.294(146)	1.257(146)

イロト イヨト イヨト イヨト

э


Form-factors extracted only from the LCSR and lattice inputs

BSZ									
$\chi^2_{\rm min}/{ m DOF}$	p-value(%)	Parameters	Values						
4.48/15	99.6	a_0^+	0.213(22)						
		a_1^+	-0.65(14)						
		a_2^+	0.263(425)						
		a_3^+	0.67(31)						
		a_{1}^{0}	0.41(17)						
		a_{2}^{0}	1.46(51)						
		a_3^0	1.78(49)						
	BO	CL							
$\chi^2_{\rm min}/{\rm DOF}$	p-value(%)	Parameters	Values						
12.88/15	61	b_0^+	0.396(13)						
		b_{1}^{+}	-0.707(70)						
		$b_{2}^{+} \\ b_{3}^{+} \\ b_{0}^{0}$	-0.36(18)						
		b_3^+	0.77(32)						
			0.521(17)						
		b_1^0	-1.756(78)						
		b_2^0	1.15(16)						

・ロト ・四ト ・ヨト ・ヨト

э

Binned differential branching fraction plots

Different scenarios

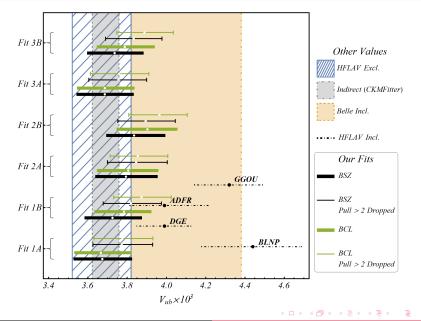
- <u>Fit 1</u>: B^0 decays from Belle (2011) and Belle (2013); B^- decays from Belle (2013); the combined modes from BaBar (2011) and BaBar (2012).
 - <u>*Fit 1A*</u>: Experimental data (Fit 1) + synthetic Lattice data points,
 - <u>Fit 1B</u>: Experimental data (Fit 1) + synthetic Lattice data points + LCSR.
- <u>Fit 2</u>: B^0 decays from Belle (2011), BaBar (2012), and Belle (2013); B^- decays from BaBar (2012) and Belle (2013).
 - <u>*Fit 2A*</u>: Experimental data (Fit 2) + synthetic Lattice data points,
 - <u>Fit 2B</u>: Experimental data (Fit 2) + synthetic Lattice data points + LCSR.
- <u>Fit 3</u>: The combined modes from BaBar (2011) along with the Fit 2 dataset.
 - <u>*Fit 3A*</u>: Experimental data (Fit 3) + synthetic Lattice data points,
 - $\underline{Fit 3B}$: Experimental data (Fit 3) + synthetic Lattice data points + LCSR.

Different scenarios

			BSZ F	arametrizati	on			
Run Name		Fu	ıll	Dropped Pull > 2				
	$\chi^2_{ m min}/ m DOF$	p-value(%)	$V_{ub} \times$	$V_{ub} \times 10^3$		p-value(%)	V_{ub} :	$\times 10^3$
			Frequentist	Bayesian			Freq.	Bayes
Fit 1A	73.4/56	5.92	3.69(14)	3.67(14)	46.6/52	68.68	3.79(15)	$3.77 \begin{pmatrix} 15 \\ 16 \end{pmatrix}$
Fit 1B	77./65	14.57	3.74(13)	$3.73 \begin{pmatrix} 13\\ 14 \end{pmatrix}$	49.3/61	85.77	3.83(14)	$3.82 \begin{pmatrix} 14\\ 16 \end{pmatrix}$
Fit 2A	59.5/61	53.17	3.81(14)	3.79(15)	46./59	89.26	3.86(15)	$3.85 \begin{pmatrix} 15\\ 16 \end{pmatrix}$
Fit 2B	62./70	74.23	3.85(14)	$3.83 \begin{pmatrix} 13\\ 15 \end{pmatrix}$	48.3/68	96.63	3.91(14)	$3.89\left(^{14}_{15}\right)$
Fit 3A	82.2/67	9.98	3.70(14)	3.69(14)	53.3/62	77.56	3.76(14)	$3.76\binom{15}{14}$
Fit 3B	85.9/76	20.54	3.75(13)	$3.74 \begin{pmatrix} 13\\ 14 \end{pmatrix}$	62./73	81.79	3.84(14)	3.83(14)
			BCL F	Parametrizati	on			
Run Name		Fu	ıll			Dropped P	ull > 2	
	$\chi^2_{ m min}/ m DOF$	p-value(%)	$V_{ub} \times$	10^{3}	$\chi^2_{\rm min}/{ m DOF}$	p-value(%)	V_{ub} :	$\times 10^3$
			Freq.	Bayes			Freq.	Bayes
Fit 1A	73.5/56	5.84	3.69(14)	$3.67 \begin{pmatrix} 13 \\ 15 \end{pmatrix}$	46.7/52	68.34	3.79(15)	3.78(15)
Fit 1B	92.1/65	1.51	3.79(13)	$3.78\binom{14}{13}$	63.2/61	39.84	3.89(14)	$3.87 \begin{pmatrix} 14\\ 15 \end{pmatrix}$
Fit 2A	60.1/61	50.8	3.81(14)	3.81(15)	46.5/59	88.19	3.87(15)	$3.85 \begin{pmatrix} 14\\ 15 \end{pmatrix}$
Fit 2B	75.9/70	29.42	3.91(14)	3.90(15)	58.3/67	76.64	3.96(14)	$3.96\left(^{16}_{14}\right)$
Fit 3A	82.7/67	9.35	3.70(14)	$3.69\binom{13}{14}$	57.8./63	66.09	3.77(14)	3.76(15)
Fit 3B	101.4/76	2.73	3.80(13)	$3.79\binom{13}{15}$	76.3/73	37.27	3.90(14)	$3.89\left(^{14}_{15}\right)$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - つ Q ()

Observables with pull $> 2 \sigma$


$$pull_i = \frac{\mathcal{O}_i^{exp} - \mathcal{O}_i^{fit}}{\sigma_i^{exp}} \,. \tag{11}$$

Form-	Fit	$[B^0 \rightarrow \pi^-]$	$[B^0 \rightarrow \pi^+]$	$[B^0 \rightarrow \pi^+]$				
Factors	Index	$q^2: 4-8$	$q^2: 20-26.4$	$q^2: 10 - 12$	$q^2: 20 - 22$	$q^2: 18-20$	$q^2: 0.0111637 - 2$	$q^2: 8-10$
		BaBar (11)	BaBar (11)	BaBar (12)	BaBar (12)	Belle (11)	Belle (13)	Belle (13)
BSZ	Fit 1A	2.46	-2.30	2.08	_	_	_	-2.42
	Fit 1B	2.52	-2.42	2.07		_		-2.41
	Fit 2A		(-)			-2.02	_	-2.43
	Fit 2B		$\left - \right\rangle$	—		-2.07	_	-2.42
	Fit 3A	2.40	-2.35	2.00	2.01	/	—	-2.44
	Fit 3B	2.45	-2.46	—		—	—	-2.43
BCL	Fit 1A	2.45	-2.30	2.07	_	—	—	-2.42
	Fit 1B	2.59	-2.56	2.07		—		-2.40
	Fit 2A			—		-2.03	_	-2.45
	Fit 2B					-2.18	2.00	-2.42
	Fit 3A	2.36	-2.36		2.00	\smile	_	-2.45
	Fit 3B	2.48	-2.61					-2.44
			\bigcirc					

(日) (四) (日) (日) (日)

ъ

Comparison of $|V_{ub}|$ results

Ipsita Ray

Deviations of theoretical predictions from data

$$lev_i = \frac{\mathcal{O}_i^{exp} - \mathcal{O}_i^{SM}}{\sqrt{(\sigma_i^{exp})^2 + (\sigma_i^{SM})^2}},\tag{12}$$

イロト イヨト イヨト イヨト

1

Form-	Inclusive	$[B^0 \to \pi^-]$	$[B^0 \rightarrow \pi^-]$	$[B^0 \to \pi^-]$	$[B^+ \rightarrow \pi^0]$	$[B^0 \rightarrow \pi^+]$	$[B^0 \to \pi^+]$
Factors	V_{ub}	$q^2: 18-20$	$q^2: 20-26.4$	$q^2: 18-20$	q^2 : 20 - 26.4	$q^2:\ 0.0111637-2$	$q^2:\ 8-10$
	used	Belle (11)	BaBar (11)	BaBar (12)	BaBar (12)	Belle (13)	Belle (13)
BSZ	HFLAV (GGOU)	-2.55	-3.54	-2.13	-2.35		-2.04
	HFLAV (BLNP)	-2.50	-3.27	-2.14	-2.41		-2.09
	Belle (New)	—	-2.32	_	_	2.22	_
BCL	HFLAV (GGOU)	-2.32	-3.49	_	-2.28	2.30	-
	HFLAV (BLNP)	-2.32	-3.23		-2.35	2.07	_
	Belle (New)		-2.29			2.54	—
		$\overline{}$	\sim				

Comparison of $|V_{ub}|^{exc.}$ obtained in this work

- <u>Fit 2B-I</u>: Input used in Fit 2B without the data on $\mathcal{B}(B^0 \to \pi^-)^{[18,20]}(Belle2011).$
- <u>Fit 3B-I</u>: Input used in Fit 3B without the data on $\mathcal{B}(B^0 \to \pi^-)^{[20,26.4]}(BaBar2011).$
- <u>Fit 3B-II</u>: Input used in Fit 3B without the data on $\mathcal{B}(B^0 \to \pi^-)^{[18,20]}(Belle2011)$ and $\mathcal{B}(B^0 \to \pi^-)^{[20,26,4]}(BaBar2011)$.

Fit	BSZ				BCL			
Scenario	$\chi^2/{ m DOF}$	p-value(%)	$V_{ub} \times 10^3$		$\chi^2/{ m DOF}$	p-value(%)	$V_{ub} \times 10^3$	
			Frequentist	Bayesian			Frequentist	Bayesian
F2B-I	55.4/69	88.14	3.90(14)	$3.89\substack{+0.14 \\ -0.15}$	68.85/69	48.25	3.96(14)	$3.95\substack{+0.14 \\ -0.15}$
F3B-I	78.86/75	35.8	3.83(14)	3.83(13)	93.6/75	7.19	3.89(14)	3.89(14)
F3B-II	72.96/74	51.25	3.88(14)	$3.87\substack{+0.14 \\ -0.15}$	87.2/74	13.99	3.94(14)	$3.93\substack{+0.14 \\ -0.15}$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへの

- We have extracted $|V_{ub}|$ analyzing all the available inputs on the exclusive $B \rightarrow \pi l \nu$ decays. This includes the data on the partial decay rates, inputs from lattice, and those from LCSR.
- We have identified BaBar(11) data (at least a part of it) as a probable source of bad quality fit. The fit scenarios (Fit 2A and 2B) without that data-set has an appreciable fit-probability.
- We found a very small number of data-points that compromise the fit-quality, and at the same time, influence the extraction of $|V_{ub}|$.
- From the full dataset after dropping $\mathcal{B}(B^0 \to \pi^-)^{[18,20]}$ (Belle(11)) and $\mathcal{B}(B^0 \to \pi^-)^{[20,26.4]}$ (BaBar(11)), the extracted $|V_{ub}| = (3.94(14)) \times 10^{-3}$. \to Consistent with the recent one extracted from inclusive $B \to X_u \ell \nu_\ell$ decay by Belle within 1 σ .

Ipsita Ray ICHEP 2022

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ▲臣 - のへで