Studying radiative charm meson decays at the LHCb experiment

Aleksei Chernov

IFJ PAN

July 11, 2022

Aleksei Chernov (IFJ PAN)

Studying radiative charm meson decays at the

July 11, 2022 1 / 17

Place of charm physics within the Standard Model

メタト イヨト イヨト ニヨ

Status of CP violation in charm

- Small in the Standard Model, as illustrated by Charm's UT (above)
- First discovery LHCb in early 2019, using combined Run 1 and Run 2 data of $D^0 \rightarrow hh$ decays, $> 5\sigma$ observation of $\Delta A_{CP} = A_{CP}(KK) A_{CP}(\pi\pi) = (-15.4 \pm 2.9) \times 10^{-4}$
- All measurements of the invidivual asymmetries of $D^0 \rightarrow hh$ are consistent with zero so far.

Radiative charm decays

- Object of our study is prompt $D^{*+} \rightarrow (D^0 \rightarrow V\gamma)\pi^+$ (c.c implied) decays, where V stands for a vector meson - ρ , ϕ or K^*
- Flavour changing neutral current suppressed by GIM mechanism in the Standard Model.
- Significant asymmetries allowed in the SM, possibly further enhanced by BSM particles entering the penguin .

Figure 2: Examples of short-distant radiative penguin decay $D^0 \rightarrow \rho \gamma$, radiative W exchange and possible long distance effect (right).

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Nuisance asymmetries

The raw asymmetry is measured in a simple counting experiment:

$$A_{raw} = rac{N(D^0) - N(ar{D^0})}{N(D^0) + N(ar{D^0})}$$

This observable asymmetry can be split into three different categories: physical CP asymmetry, production asymmetry - more $\overline{D^0}$ produced in *pp* collisions than D^0 , and detection asymmetry associated with each charged particle (LHCb detector is made out of ordinary matter, and interaction cross-sections for h^+ and h^- differ):

$$A_{raw} = A_{CP} + A_{prod.} + A_{det.}(hh) + A_{det}(\pi_s)$$

This necessiates the use of normalisation channels to get rid of nuisance asymmetries.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Analysis strategy

- We analyze data collected by the LHCb detector during the Run 1 and Run 2 (treated separately) with a trigger requiring two charged tracks and a photon-like calorimeter cluster that can be reconstructed as D⁰, plus a 'slow' (low p^T) charged pion to identify the flavour.
 Main background is D⁰ → hhπ⁰ processes where the final π⁰ → γγ cluster is falsely identified as a single photon; in the low invariant mass regions significant contribution of η → γγ is observed.
- We perform a multi-dimensional fit to three observables:
 - invariant mass M(D⁰)
 - cosine of the helicity angle of the final state charged hadron $cos(\theta)$ vital to distinguish between the radiative signal and π^0 peaking background. $V\gamma$ signal has the shape $(1 cos^2(\theta)) \times acceptance$, peaking around $cos(\theta) = 0$
 - Mass difference $\Delta M = M(D^{*+}) M(D^0)$ needed to take into account the5 combination of a good D^0 meson with a random slow pion this type of combinatorial background produces a peak in M, but is flat in ΔM . Mistagged D^0 's **can affect asymmetry**.

2D fit to the $K^*\gamma$ calibration subsample ($cos(\theta) < -0.7$)

Figure 3: Helicity edge - where we expect no or negligible signal - is used to calibrate parameters of the PDFs in order to lessen reliance on MC.

Aleksei Chernov (IFJ PAN)

Studying radiative charm meson decays at the

July 11, 2022 7 / 17

Fit projections - $M(D^0)$ in bins of $cos(\theta)$

Figure 4: We expect $cos(\theta)$ and $M(D^0)$ to be independent observables and this assumption seems to hold.

Aleksei Chernov (IFJ PAN)

July 11, 2022 8 / 17

Fit projections - $cos(\theta)$ in bins of $M(D^0)$

Figure 5: We expect $cos(\theta)$ and $M(D^0)$ to be independent observables and this assumption seems to hold.

Aleksei Chernov (IFJ PAN)

Studying radiative charm meson decays at the

July 11, 2022 9 / 17

2D fit to the $K^*\gamma$ sample in the signal helicity region

Figure 6: Preliminary fit to the $D^0 \rightarrow K^* \gamma$ sample. After splitting by the charge of tagging pion, from a similar simultaneous fit we can extract A_{raw} .

Aleksei Chernov (IFJ PAN)

Studying radiative charm meson decays at the

July 11, 2022 10 / 17

Fit projections - invariant D^0 mass in bins of helicity

Studying radiative charm meson decays at the

July 11, 2022 11 / 17

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Fit projections - $cos(\theta)$ in bins of invariant mass

(日) (同) (日) (日)

Aleksei Chernov (IFJ PAN)

Studying radiative charm meson decays at the

Shape of the ΔM component from the $K^* \gamma MC$ for 2012 run conditions

Figure 7: Shape used - double Gaussian with a common mean. A third, very wide Gaussian is added with a small (< 4%) fraction to take_care_of the outliers. = -9 and = -9 an

Aleksei Chernov (IFJ PAN)

Studying radiative charm meson decays at the

July 11, 2022 13 / 17

Data-MC difference - calibration and correlations

- Calibration sample is selected along the edges of the helicity angle, where the signal is small or negligible. The purpose of this fit is to take possible data-MC difference into account. We assume that helicity angle θ is not correlated with either D⁰ invariant mass or ΔM.
- For the other two variables, such an assumption does not hold up resolution of ΔM peak depends on the mass (or vice versa).
- The simplest possible solution to this problem we've found is to introduce a scale factor to the ΔM resolution that depends on the M(D⁰):

$$\sigma_{\Delta M}(M(D^0)) = \sigma_{MC} \times \lambda \mid \lambda = P^N(M(D^0))$$

ΔM fits in bins of mass

Figure 8: Fits in mass bins using the fixed shape from slide 13 multiplied by a scale factor λ - get an estimation of $\sigma_{\Delta M}(M(D^0))$.

Aleksei Chernov (IFJ PAN)

Studying radiative charm meson decays at the

July 11, 2022 15 / 17

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Parametrizing $\lambda(M)$ curve

Figure 9: Fit to the $\lambda(M)$ taken from the slide above; function used is P^3 .

July 11, 2022 16 / 17

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Thank you for your attention!

Aleksei Chernov (IFJ PAN) Studying radiative charm meson decays at the

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A