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Deep Neural Networks

An Artificial Neural Network is a computational model that has layers of interconnected nodes.
A Deep Neural Network has more than one hidden layer.

input layer hidden layer output layer

, outputs
inputs

Through training, the neural network learns to recognize a pattern in the input data.
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input layer hidden layer output layer

. outputs
inputs

Nodes convert weighted inputs to
outputs. The weights keep getting
updated in the process of learning.
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Deep Neural Networks at the LHC
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https://home.cern/news/news/knowledge-sharing/cms-releases-open-data-machine-learning

The triggering challenge at LHC

Triggering = filter events to reduce data rates to manageable levels

A Events that are discarded by the trigger are lost!
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https://docs.google.com/file/d/1aQi52U1rUfcdzPwO9ApZ_-FM667H5wcY/preview

ldea

L1 of data processing typically uses
custom hardware with FPGAs

Det_e.ctor (1 trigger ngl-_l-L_evel Data
collisions Trigger Analysis
@ ‘

AN)
Q Let's run Deep Neural Networks in real-time on FPGAs to improve event selection!
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Running Deep Neural Networks on FPGAs

FPGAs (Field-Programmable Gate Arrays) are programmable integrated circuits.

Random Access Memories to store constant values

Logic cells for simple arithmetic operations

Digital Signal Processors to perform multiplications

Image source

Depending on the FPGA resources available, we should know how to reduce the size of a network
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https://indico.cern.ch/event/587955/contributions/2937529/attachments/1683932/2706842/HLS4ML_CHEP2018_Ngadiuba.pdf

Pruning

One way of reducing
the size of a neural
network is pruning.

Pruning = removing
superfluous structure

D. Mascione



Pruning

One way of reducing
the size of a neural
network is pruning.

Pruning = removing
superfluous structure
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Usual pruning scheme
lterate (fine tuning)
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Davis Blalock et al., What is the state of neural network pruning?, Proceedings of machine learning and systems 2 (2020), pp. 129-146
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AutoPruner: a novel pruning strategy

e it can prune nodes
e it prunes during training

e the number of nodes to be pruned
can be determined by the user

e it can determine the most suitable
network architecture

D. Mascione

AutoPruner

177

)

'--
‘__
‘__

————————

—————————

—————————

11



AutoPruner: a novel pruning strategy

e it can prune nodes

e it prunes during training

e the number of nodes to be pruned
can be determined by the user

e it can determine the most suitable

network architecture
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Use case

|dentify jets that contain both the b quarks from boosted Higgs decay
in pp collision experiments using Deep Neural Networks

D. Mascione
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The performance increases with the
percentage of nodes used, as expected:
AutoPruner is really switching off nodes
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Results
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After finding the optimal network layout
with AutoPruner, the reduced network can
be retrained as a new independent model,
with performance compatible with the
pruned one within the uncertainties.

-> The performance of the pruned
networks reflects the performance of
the reduced networks to be
implemented on FPGAs.
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Conclusions

AutoPruner proved to be:

- simple to incorporate C )
- effective and successful in reducing the networks’ size
- fast (pruning during training, no need to fine tune)

- very understandable

Further developments are focusing on: ‘
- quantify stability against initial conditions

« characterize optimality ‘

D. Mascione
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Thanks!

Want to know more
about Deep Learning
applications in Particle
Physics?

deep learning for Particle Physics

We investigate problems concerning Particle Physics using Deep Learning

STAY UPDATED LEARN MORE

Who we work with
@ Trento Institute for
\ Fundamental Physics
and Applications

ATLAS Flavour Tagging Working Group

deepPpP ATLAS
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Awesome!
Visit
https://www.deeppp.eu/
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Simple neural network: an example

input layer

inputs

L —
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hidden layer

output layer

outputs
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Example
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inputs
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input layer
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forward propagation
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activation
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0
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Example

D. Mascione

inputs
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input layer

hidden layer

forward propagation

activation
function

output layer

backward propagation
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0
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Why pruning?

Bigger networks are usually more accurate

- RoBERTa Pruning
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Best to start out with very large
models and prune with minimal
performance penalty
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https://www.arxiv-vanity.com/papers/1811.06965/
https://aihub.org/2020/04/09/speeding-up-transformer-training-and-inference-by-increasing-model-size/

Pruning for applied research

Relevance to the outside world:

e Reduction in storage requirements

e Private on-device computation
(mobile, VR, loT)

e Power savings

Reduced heat dissipation in wearable devices

e Way to test neuron importance assumptions

e
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Michela Paganini, Neural Network Pruning: from over-parametrized to under-parametrized networks, 4th IML Workshop, CERN
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AutoPruner for feature selection

One AutoPruner layer following the input layer can be used also to select relevant features
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Future perspectives

Apply AutoPruner to Deep Neural Networks
currently used in the ATLAS Flavour Tagging
Working Group to improve tagging algorithms

—5 tracks b jet

______ b hadron \

—————— impact
parameter

/' & secondary
vertex

. - primary vertex

\

ATLAS Flavour Tagging Working Group

EXPERTMENT
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Investigate how our pruning strategy can
improve the significance level of predictions
by reducing the propagation of uncertainties
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