XX FRASCATI SUMMER SCHOOL "BRUNO TOUSCHEK"

IN NUCLEAR, SUBNUCLEAR AND ASTROPARTICLE PHYSICS

LNF, July 11-15, 2022 Frascati (Italy)

Daniela Mascione

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Deep Neural Networks

An Artificial Neural Network is a **computational model** that has layers of interconnected nodes. A Deep Neural Network has more than one hidden layer.

Through training, the neural network **learns** to recognize a **pattern** in the input data.

hidden layer

output layer

outputs

input layer

inputs

Deep Neural Networks at the LHC

Deep Neural Networks are widely used at the LHC for a variety of applications that include:

- Event selection
- Tracking
- Jet classification
- Fast simulation

The triggering challenge at LHC

Triggering = **filter events** to reduce data rates to manageable levels

Events that are discarded by the trigger are lost!

Idea

Let's run Deep Neural Networks in real-time on FPGAs to improve event selection!

Running Deep Neural Networks on FPGAs

FPGAs (Field-Programmable Gate Arrays) are programmable integrated circuits.

Depending on the FPGA resources available, we should know how to reduce the size of a network

Pruning

One way of **reducing** the size of a neural network is **pruning**.

Pruning = **removing** superfluous structure

Pruning

One way of **reducing** the size of a neural network is **pruning**.

Pruning = **removing** superfluous structure

Davis Blalock et al., What is the state of neural network pruning?, Proceedings of machine learning and systems 2 (2020), pp. 129–146

AutoPruner: a novel pruning strategy

- it can prune **nodes**
- it prunes during training
- the number of nodes to be pruned can be determined by the **user**
- it can determine the most suitable **network architecture**

AutoPruner

AutoPruner: a novel pruning strategy

- it can prune **nodes**
- it prunes during training
- the number of nodes to be pruned can be determined by the **user**
- it can determine the most suitable **network architecture**

Use case

Identify jets that contain both the *b* quarks from boosted Higgs decay in *pp* collision experiments using Deep Neural Networks

Results

The performance increases with the percentage of nodes used, as expected: AutoPruner is really **switching off** nodes

Results

After finding the **optimal network layout** with AutoPruner, the reduced network can be retrained as a new independent model, with **performance compatible** with the pruned one within the uncertainties.

→ The performance of the pruned networks reflects the performance of the reduced networks to be implemented on FPGAs.

Conclusions

AutoPruner proved to be:

- simple to incorporate
- effective and successful in reducing the networks' size
- fast (pruning during training, no need to fine tune)
- very understandable

Further developments are focusing on:

- quantify stability against initial conditions
- characterize optimality

Thanks!

Want to know more about Deep Learning applications in Particle **Physics?**

Awesome!

Visit https://www.deeppp.eu/

Backup

Simple neural network: an example

Why pruning?

Bigger networks are usually more **accurate**

→ Best to start out with very large models and prune with minimal performance penalty

Pruning for applied research

Relevance to the outside world:

- Reduction in storage requirements
- Private on-device computation (mobile, VR, IoT)
- Power savings
- Reduced heat dissipation in wearable devices
- Way to test neuron importance assumptions

Michela Paganini, Neural Network Pruning: from over-parametrized to under-parametrized networks, 4th IML Workshop, CERN

AutoPruner for feature selection

One AutoPruner layer following the input layer can be used also to select relevant features

Future perspectives

Apply AutoPruner to Deep Neural Networks currently used in the <u>ATLAS Flavour Tagging</u> <u>Working Group</u> to **improve** tagging algorithms

Investigate how our pruning strategy can improve the significance level of predictions by **reducing** the propagation of **uncertainties**

